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Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic
vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to
extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to
current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a
significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long
measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions
dominates independently acting decoherence processes, a situation realized in thermal high atom-density
magnetometers and clocks.
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Quantum noise due to the fundamental quantum-
mechanical uncertainties of physical observables sets the
standard quantum limits [1] (SQL) for the accuracy of any
quantum measurement. Spin-projection noise or spin noise
[2], in particular, poses a fundamental limit to the mea-
surement precision using an ensemble of spin systems, be it
the actual spin angular momentum of alkali-metal atoms
employed, for example, in sensitive magnetometers [3], or
other two-level systems such as those involved in atomic
clocks [4]. Spin noise of an ensemble of uncorrelated
atoms leads to a fundamental noise level that scales as
1=

����
N
p

, where N is the number of atoms participating in the
measurement process. The creation of quantum correla-
tions between the atoms has emerged as a possibility of
extending the measurement precision beyond the SQL of
uncorrelated ensembles. Spin squeezing refers to multi-
particle quantum states of the system in consideration
which exhibit this suppression of quantum noise in spec-
troscopic measurements [5]. Several theoretical proposals
describing ways to create spin squeezing have appeared
[6], but so far, spin squeezing has been experimentally
demonstrated in systems where decoherence is negligible,
i.e., in a cold cesium vapor [7,8] and in a low density
thermal cesium vapor [9]. The motivation for this work is
the possibility of enhancing the magnetic sensitivity of
atomic magnetometers [10] employing high density
alkali-metal vapors by creating spin-squeezed states.
These devices have several applications [11,12] which
would benefit from an increased sensitivity beyond the
relevant SQL.

However, it was recently conjectured [13] that spin
squeezing is of little use in the presence of spin relaxation,
leading to sub-SQL magnetic sensitivities only for an
impractically short measurement time. This would be det-
rimental since, unlike laser-cooled atomic ensembles, in
high density thermal atomic vapors used in atomic mag-
netometers spin relaxation is a dominant effect. A similar

result was derived for the case of improving frequency
standards by use of entanglement [14].

In this Letter we show that spin squeezing does actually
lead to a sub-SQL spin noise level and enhanced magnetic
sensitivity even in the presence of spin relaxation, and for
long measurement times. Using quantum state diffusion
theory [15], which naturally reflects the fluctuation-
dissipation theorem for the collective atomic spin of un-
correlated atoms, we demonstrate the intimate connection
between spin noise and spin relaxation. Hence we find that
there is no additional noise due to spin relaxation as
suggested in [13], where spin relaxation was treated inde-
pendently of spin noise. We then show that the dominant
relaxation mechanism in a dense alkali-metal vapor, i.e.,
binary alkali-metal atom collisions, preserves the ensemble
quantum correlations, allowing an enhanced measurement
precision for a time on the order of the spin-relaxation
time. We also identify the opposite limit, in which inde-
pendently acting decoherence mechanisms, if dominant,
do actually lead to the conclusions reported in [13,14].

The physical system we will be considering is a thermal
ensemble of alkali-metal atoms confined in a cell. The
atoms are initially spin polarized along the x̂ axis, so that
hsxi0 � 1=2, where s denotes the atom’s electron spin. A
small magnetic field to be measured is applied along the ẑ
axis and induces a precession of the spins, observed for a
measurement time �. The transverse spin polarization thus
produced can be detected [16] via Faraday rotation of an
off resonant probe laser’s polarization measured with, e.g.,
a balanced polarimeter. In a dense alkali-metal vapor the
transverse spin relaxation, or spin decoherence, is domi-
nated by two kinds of binary collisions, namely, spin-
exchange and spin-destruction collisions [17], with respec-
tive rates 1=Tse and 1=Tsd, proportional to the atom density.
Both are ‘‘sudden’’ with respect to the nuclear spin and
tend to reduce the density matrix [18] � � �� a � s (with
� and a being nuclear operators) to the part � without

PRL 100, 073002 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

0031-9007=08=100(7)=073002(4) 073002-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.073002


electronic spin polarization, i.e., d�=dt � ��� ��=T2,
where 1=T2 � 1=Tse � 1=Tsd. At very low magnetic field,
which will be assumed henceforth, relaxation due to spin
exchange is suppressed [19], and 1=T2 � 1=Tsd. The time
evolution of the density matrix can be written in the
Lindblad form

 

d�
dt
� �i�H g; �� �

X3

j�1

�Lj�L
y
j �

1
2L
y
j Lj��

1
2�L

y
j Lj�;

(1)

where H g is the ground state Hamiltonian and the three
Lindblad operators are

 L1 �
1��������
2T2

p s�; L2 �
1��������
2T2

p s�; L3 �
1�����
T2

p sz: (2)

It can be shown [20] that the change of a quantum state j i
after the elapse of a time interval dt is given by the
quantum state diffusion equation

 jd i � �idtH gj i �
X3

j�1

�hLyj i Lj �
1
2hL
y
j i hLji 

� 1
2L
y
j Lj�j idt�

X3

j�1

�Lj � hLji �j id�j; (3)

where the first term represents the Hamiltonian evolution,
the second dissipation, and the third the stochastic fluctua-
tions, described by the statistically independent complex
Wiener processes d�j, with j � 1, 2, 3, i.e., d�id�	j �
dt�ij. Since the nuclear spin plays no fundamental role in
the following considerations, we will consider an ensemble
of N spin-1=2 particles. We furthermore assume the prob-
ing laser is far enough off resonance that we can neglect
measurement-induced backaction on the spins [21], that is,
we are going to only consider spontaneous spin noise and
its effect on measurement precision. This can be done since
the probe polarization rotation scales with the probe laser
detuning � as 1=�, whereas the measurement strength [21]
scales as 1=�2. The effects of probe photon shot noise and
scattering have been treated in [13]. From (3) it follows
[22] that the expectation value hsyi, which is the measured
observable, obeys an Ornstein-Uhlenbeck stochastic pro-
cess,

 dhsyi � !Lhsxi0dt�
dt

2T2
hsyi �

d���������
4T2

p ; (4)

where !L is the Larmor frequency and now d� is a real
Wiener process [23], i.e., a normal random variable with
zero mean and variance dt. Defining the ensemble trans-
verse spin as Sy �

PN
i�1 s

�i�
y , it follows that for N uncorre-

lated atoms

 dhSyi � !LhSxi0dt�
dt

2T2
hSyi � �Sy

d������
T2

p ; (5)

where hSxi0 � Nhsxi0 and �Sy �
���������
N=4

p
is the coherent

spin state (CSS) uncertainty. The spectrum of the trans-
verse spin fluctuations follows a Lorentzian distribution
centered at the origin (at zero magnetic field) with a width
equal to 1=2T2, which also sets the bandwidth of the
magnetometric measurement [24]. As is evident from (5),
transverse spin dissipation and spin noise are intimately
related, both being described by one and the same parame-
ter, T2. The reason that spin noise sets the SQL for a
magnetic field measurement using a collision-dominated
alkali-metal vapor is that atomic collisions and the asso-
ciated relaxation continuously redistribute the variance of
the ensemble transverse spin, i.e., even in the infinite time
limit when any initial nonzero expectation hSyi has de-
cayed away, hSyi has a nonzero power spectrum extending
to 1=2T2. This forms the basis of spontaneous spin noise
spectroscopy [22,25]. In contrast, in the case of laser-
cooled collisionless atomic vapors [7], the power spectrum
of hSyi has only a zero-frequency component, which ex-
hibits a shot-to-shot distribution around zero with an un-
certainty

���������
N=4

p
characterizing the CSS [7]. We now

assume that the atomic ensemble has been spin squeezed,
i.e., the spin-squeezing parameter [2] � �

����
N
p

�Sy=hSxi<
1. That is, as in [26], we assume that a spin-squeezing
Hamiltonian has been applied before probing the precess-
ing spins. In the presence of spin squeezing, however, the
spin uncertainties of individual atoms do not simply add in
quadrature, as there are negative pairwise correlations [26]
that have to be accounted for:

 Cijyy 
 hs
�i�
y s
�j�
y i � hs

�i�
y ihs

�j�
y i �

�2 � 1

4N
; (6)

leading again to Eq. (5), but now

 �Sy � �
���������
N=4

p
: (7)

This is the first main result of this work. Spin relaxation
obviously leads to dissipation of a nonzero expectation
value hSyi. At the same time it is manifested through spin
noise, i.e., the fluctuations of hSyi around its mean value,
described by the third stochastic term of Eq. (5). There is
no other noise source due to spin relaxation. We emphasize
that these fluctuations are driven by atomic collisions and
not by photon noise coupling into hSyi, as is the case with
strong measurements [27] of the collective spin of laser-
cooled vapors. The magnitude of these fluctuations, given
by Eq. (7), is indeed reduced if � < 1 and a sub-SQL
sensitivity can be achieved for a measurement time � �
T2. Indeed, from (5) it follows that the maximum value of
hSyi will be hSyi� � !L2T2hSxi0 at � � T2. The noise
acquired at time � � T2 due to the stochastic term of the
evolution Eq. (5) will on the average be �hSyi�

�
������
N

4T2

q �����
T2

p
��

����
N
p

=2. Thus the sensitivity limit for measur-

ing a small frequency !L will be (neglecting factors of 2)
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 �!L �
�hSyi

@hSyi=@!L
�

�

T2

����
N
p : (8)

By averaging n such measurements for a total measure-
ment time T � nT2, we get

 �!L �
��������������
NT2T
p : (9)

For the case of uncorrelated atoms, � � 1, we recover the
well-known shot-noise limit. In the above derivation we
have neglected the decay and fluctuations of hSxi. This is
allowed, since the decay of hSxi during the measurement
time T2 will change our estimate by a factor of order 1, and
the fluctuations of hSxi, of order

����
N
p

, leak into hSyi but are
diminished by the spin rotation angle, !LT2. For a mag-
netic field magnitude in the fT range and a spin coherence
time T2 � 1 ms, this factor is of order 10�8, and thus
!LT2

����
N
p

is for all practical purposes negligible compared
to the actual spin noise of hSyi, of magnitude �

����
N
p

.
In the following we are going to justify the previous

assertions in more detail. The reason that spin noise is
reduced even in the presence of relaxation is that the
decoherence mechanism we are considering is not acting
on every atom independently, resulting in a change
d��Sy�

2 � 0 to first order in dt. Indeed, in a binary colli-
sion between alkali-metal atoms the dominant interaction
leading to relaxation is the so-called spin-axis interaction
[17,28], described by a Hamiltonian of the form H sa �

��3�	�	 � 1�, where �	 is the projection of the total
electron spin of the colliding atoms on the internuclear
axis and � is a coupling constant. This represents corre-
lated decoherence [29], the effect of which is that it pre-
serves spin correlations. To prove that, we consider two
spin-1=2 particles in the triplet subspace [26] state j i �

j00i � ��j01i � j10i�=

���
2
p
� �j11i colliding along some

axis �̂. The spin-axis Hamiltonian reduces to H sa �

�s�1�� s
�2�
� . The change in the initial density matrix � �

j ih j induced by H sa will be d� � �i�H sa; ��dt. We
then calculate the correlation C12

yy (or concurrence [30] ) in
the state � and find C12

yy � ��
2 � 2
��=4. Whereas the

change in the expectation value hSyi � hs
�1�
y � s

�2�
y i is

found to be proportional to �dt, the change in the correla-
tion dC12

yy is found to be proportional to ��dt�2. This means
that H sa induces dissipation, as expected, but preserves
two-body quantum correlations of the spins.

We now turn to the many-particle spin-squeezed state in-
troduced in [26], j�ssi �

PN
l�0 clj�

perm
l i, where j�perm

l i �P
permj1


l0
N�li is a permutation symmetric state with l
1’s and N � l 0’s; cl � ilbl and bl are given in [26]. We
take dt to be the duration during which particles 1 and 2
have interacted through H sa, resulting in a state change
jd�ssi. The change in the ensemble variance is d��Sy�2 �
hd�ssjS2

yj�ssi � h�ssjS2
yjd�ssi. Since hSyi � 0, it follows

that Syj�ssi is orthogonal to j�ssi and therefore S2
yj�ssi is

proportional to j�ssi. Thus d��Sy�2 �Refhd�ssj�ssig.
By use of their symmetry, it is easily seen that the change
induced by H sa in the states j�perm

l i is

 j��li � �i�dt��2j
l�2i � �0j
li � �2j
l�2i�; (10)

where the real coefficients �0 and �2 depend on the
particular collision trajectory and the states j
mi contain
a subset of the terms of the corresponding states j�perm

m i,
with m � l, l� 2, and hence h
mj�

perm
m i is a real number.

Thus the overlap hd�ssj�ssi � i�dt��2cl�2 � �0cl �
�2cl�2�c	l , and therefore, since bl � bl�2 for large l,
Refhd�ssj�ssig � 0. We have thus proved in the most
general way that correlated relaxation preserves the en-
semble variance ��Sy�2, i.e., d��Sy�2 � 0 to first order
in dt.

On the contrary, independently acting decoherence pro-
cesses will tend to reduce the ensemble correlations during
the measurement. Based on the above considerations,
when an atom decoheres independently, the change in
j�perm

l i is proportional to a linear combination of j
perm
l�1 i,

and that leads to a nonzero real part of the overlap
hd�ssj�ssi, which is of order dt. The consequence of the
change of ��Sy�2 can be simply described with an effective
squeezing parameter �0 > �. Indeed, if we assume that
there are two decoherence mechanisms, one acting in-
dependently on each atom and one preserving ��Sy�2,
with respective rates 1=Tnc and 1=Tc (obviously 1=T2 �
1=Tnc � 1=Tc), using Eqs. (4) and (6) we again arrive at
(7), but with � replaced by

 �0 �

��������������������������
�2 � Tc=Tnc

1� Tc=Tnc

s
: (11)

If Tc=Tnc � 1, we get �0 � 1 and recover the case of
uncorrelated spin noise described by (5), with T2 � Tnc.
This limit corresponds to the results obtained in [13,14,26]
where entanglement in the presence of decoherence is
shown not to offer any increase in measurement precision
beyond the uncorrelated ensemble case. On the other hand,
since there will always be an independently acting relaxa-
tion mechanism, such as atom collisions with buffer gas
atoms or container walls, in the limit that Tc=Tnc � 1 there
is no point in attempting to reduce �2 below this ratio. For
example, using the spin-destruction cross sections [3] for
K-K and K-He collisions, we find that for a potassium
density of �K� � 1015 cm�3 in the presence of 1 atm of
helium buffer gas, it is Tc � 1 ms and Tnc=Tc � 50, sug-
gesting, were it experimentally feasible, the need for a
squeezing parameter no smaller than � � 0:1. The above
considerations imply a new fundamental sensitivity limit
for a frequency measurement. Based on (9) and assuming
� �

��������������
Tc=Tnc

p
we find
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 �!L �
1��������������

NTncT
p ; (12)

but now T2 � Tc � Tnc. This is the second main result of
this work. Essentially, with spin squeezing we manage to
suppress the effect of correlated spin relaxation on the
measurement precision. Undoubtedly, the measurement
precision still scales as 1=

����
N
p

. However, N can now be
made as large as is practically possible, since Tnc is atom-
density independent. Therefore, �!L can be made arbi-
trarily small, in contrast to the uncorrelated-atoms case,
where �!L saturates at high densities since the relaxation
rate 1=Tc is proportional to the atom density. Furthermore,
1=Tnc represents relaxation due to ‘‘technical’’ imperfec-
tions, such as relaxing cell walls, that is not in any funda-
mental way prevented from reaching small values.

Since it is straightforward to show that independently
acting decoherence tends to increase ��Sy�2 to the uncor-
related atoms value of N=4 at a rate 1=Tnc, we can more
formally arrive at Eq. (12) by solving the set of equations

 dhSyi � !LhSxi0e
�t=T2dt�

dt
2T2
hSyi � �Sy

d������
T2

p (13)

 d��Sy�2 � �
�
��Sy�2 �

N
4

�
dt
Tnc

; (14)

where the decay of hSxi has also been included for com-
pleteness and initially �Sy�t � 0� � �

���������
N=4

p
. For a mea-

surement time Tc, the above equations lead to a sensitivity
�!L � 1=

����������������
NTcTnc

p
. Averaging n � T=Tc such measure-

ments leads again to (12).
In conclusion, we have shown that by suppressing spin

noise due to correlated spin relaxation, spin squeezing
results in an increased measurement precision during a
long measurement time in a collision-dominated alkali-
metal vapor. Similar comments apply to the case of atomic
clocks employing thermal alkali-metal vapors. The spin-
exchange interaction during binary collisions, which is the
main decoherence mechanism in these clocks, and of the
form H se � s1 � s2, shares the same property with the
spin-axis interaction; i.e., it results in correlated decoher-
ence. Spin squeezing the clock transition could thus sig-
nificantly boost the clock performance of frequency
standards employing thermal alkali-metal vapors.
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