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Spin noise sets fundamental limits to the attainable precision of measurements using spin-polarized atomic
vapors and therefore merits a careful study. On the other hand, it has been recently shown that spin noise
contains useful physical information about the atomic system, otherwise accessible via magnetic-resonance-
type experiments. We here show in yet another manifestation of the fluctuation-dissipation theorem, that spin
noise reveals information on the spin-coherence dissipation properties of the atomic system, described by 1/T2,
the transverse spin-relaxation rate. We present the high-resolution measurements of spin noise at a low mag-
netic field, leading to an accurate comparison of the extracted relaxation rates with the ones inferred from
traditional magnetic-resonance-type measurements in optical pumping experiments.
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I. INTRODUCTION

Quantum noise in atomic systems is usually considered to
pose an unavoidable fundamental limitation to the achievable
measurement precision leading to the so-called standard
quantum limits �1�. Spin noise, in particular, limits the attain-
able precision of measurements involving an ensemble of
uncorrelated paramagnetic atoms �2–7� as well as other two-
level systems employed, for example, in atomic clocks �8�.
Furthermore, the understanding of spin noise of uncorrelated
atomic ensembles is crucial for the realization of methods
aimed at producing spin squeezing �9–11�. For these reasons
it appears essential to directly study spin noise and its vari-
ous manifestations. However, another important aspect of
spin noise is that it can reveal physical properties of the
atomic medium under study without the necessity of a spe-
cific state preparation usually performed in traditional spec-
troscopic investigations. In particular, the spin-coherence
dissipation properties of a thermal atomic vapor, usually de-
scribed by the transverse spin-relaxation rate 1 /T2, can be
elucidated by detecting spontaneous spin fluctuations of the
atoms, reminiscent of the fundamental fluctuation-dissipation
theorem �12�.

Historically, spin noise of an ensemble of nuclear spins
has been alluded to by Bloch �13� since the early work on
nuclear magnetic resonance, and detected later on using a dc
SQUID �14�. More recently, nuclear spin-noise imaging �15�
has been used as a noninvasive form of magnetic imaging. In
a similar fashion, electron spin fluctuations have been de-
tected in an absorption measurement �16� of spontaneous
noise spectroscopy of an alkali-metal vapor. A similar
dispersion-like measurement �17� has been recently per-
formed �18,19� and used to reveal spectroscopic information
in a nondestructive way. Spontaneous spin fluctuations were
specifically measured by the corresponding fluctuations they
induced in the Faraday rotation angle of a far-detuned probe
laser beam. Similar experiments have been carried out in
few-spin systems, such as the inference of the relaxation

properties of a single spin system from noise currents in
scanning tunneling microscope �STM� noise spectroscopy
�20� and in solid-state systems, such as the measurement of
electron spin-relaxation times in bulk GaAs �21�.

In this work we will present high-resolution measure-
ments of spin noise in a rubidium vapor at low magnetic
field. From the spin-noise spectra we extract the transverse
spin-relaxation rate 1 /T2 and compare with the known rates
measured in traditional magnetic-resonance-type experi-
ments using intentionally spin-polarized alkali-metal vapors
and radio-frequency magnetic fields. This is the first, to our
knowledge, experimental demonstration of the fluctuation-
dissipation theorem in an atomic spin system. An equivalent
geometric picture of this particular manifestation of the
fluctuation-dissipation theorem is that the quantum fluctua-
tions of an otherwise spherical normal velocity surface �22�
reveal the relaxation properties of the atomic medium in a
nonperturbative way. The physical system we use for our
measurements is a rubidium vapor in the presence of nitro-
gen buffer gas and a static magnetic field, interacting with a
far-detuned probe laser. The transverse spin-relaxation rate is
deduced from the width of the power spectrum of the Fara-
day rotation angle fluctuations induced by spin noise on the
polarization of the probe laser. In Sec. II we will lay out the
theoretical description of spin noise, using the formalism of
quantum state diffusion �23�. We find this description to be
transparent and intuitive, since it directly leads to a stochas-
tic process describing the measured expectation value of the
transverse spin. In Sec. III we describe the experimental
measurements made followed by their analysis in Sec. IV.

II. THEORETICAL DESCRIPTION OF SPIN NOISE AND
ITS MEASUREMENT

A. Stochastic evolution of the transverse spin polarization

For the case of an alkali-metal vapor in the presence of a
static magnetic field only, that is, without any optical pump-
ing light or radio-frequency magnetic fields, the atoms are
described by a ground state density matrix, the evolution of
which is given by �24�*Electronic address: ikominis@iesl.forth.gr
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where 1/T2=1/Tse+1/Tsd is the transverse spin relaxation
rate, with 1/Tse being the relaxation rate due to alkali-metal–
alkali-metal spin-exchange collisions, and 1/Tsd the relax-
ation rate due to alkali-metal–alkali-metal and alkali-metal–
buffer-gas spin-destruction collisions. Using the identities
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we can write Eq. �1� in the Lindblad form,
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with the three Lindblad operators being
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When the density matrix evolution is described by the Lind-
blad equation, it can be shown �25� that the differential
change of a quantum state 	�
 after the elapse of a time
interval dt is given by the quantum state diffusion equation

	d�
 = − idtHg	�
 + �
j=1

3 ��Lj
†
�Lj −

1

2
�Lj

†
��Lj
� −
1

2
Lj

†Lj�
�	�
dt + �

j=1

3

�Lj − �Lj
��	�
d� j , �5�

where the first term represents the Hamiltonian evolution, the
second the deterministic drift �dissipation in this case�, and
the third the stochastic fluctuations, which necessarily ac-
company the dissipative process. In the above equation, the
expectation values of the Lindblad operators are evaluated in
the state 	�
. The statistically independent complex stochas-
tic differentials d� j, with j=1,2 ,3, satisfy M�d�id� j

*�=�ijdt
and M�d�id� j�=0, where M�x� represents the mean over all
possible realizations of the stochastic variable x. To calculate
the stochastic fluctuations of �s+
, which is the measured ob-
servable as will be shown in the following section, we first
note that the transverse spin can be written as

s+ = − �2 �
F,F�

�FF�T1
1�FF�� , �6�

where

TM
L �FF�� = �

�

	F�
�F�� − M	�− 1��+F�2L + 1

� �F F� L

� M − � − M
� �7�

are the rank-L irreducible spherical tensor operators, and the
coefficients �FF� are given in Table I with a= I+1/2 and b
= I−1/2 denoting the upper and lower hyperfine multiplet,

respectively. For brevity we define 	FF�=−�2�FF�T1
1�FF��.

With the help of Eq. �5� we first calculate the drift term of
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The third term in the above comes from the product of the
fluctuation terms of Eq. �5� proportional to d�id� j

*, which for
i� j is of order higher than dt and therefore negligible, but
for i= j is a deterministic drift term of order dt. Using Eq. �8�
we can now compute the drift term of the operators 	FF�.
Their evolution is strictly determined by four coupled equa-
tions. We will however, neglect the influence of the fast pre-
cessing hyperfine coherences 	ab and 	ba and consider only
the low frequency coherences 	FF with F=a ,b. After some
algebra we find, by also including the Hamiltonian evolution
as well as the fluctuation terms, that

d� = − dt� K

T2
+ i
�� +

�

�T2

d� , �9�

where �= ��	aa
 �	bb
�T, the drift matrix is

K =�
�I�2 − �I� + 1

2�I�2

�I�2 + 3�I� + 2

2�I�2

�I�2 − 3�I� + 2

2�I�2

�I�2 + �I� + 1

2�I�2

 , �10�

with �I�=2I+1, the Hamiltonian matrix is


 = ��L 0

0 − �L
�

with �L=gs�BB /��I� being the Larmor frequency, and d�
= �d�a d�b�T with d�a and d�b being two real and independent
Wiener processes with unit diffusion constant �26�. This
means, for example, that d�a�t�=N�t��dt, where N�t� is a
normal random variable with zero mean and unit variance.
Finally, the fluctuation matrix is found to be

TABLE I. Coefficients �FF�.

F /F� a b

a ��I + 1��2I + 3�
6�2I + 1�

−� 2I�I + 1�
3�2I + 1�

b � 2I�I+1�

3�2I+1�
−� I�2I−1�

6�2I+1�
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� =��
�I�4 + 5�I�3 + 10�I�2 + 10�I� + 4

240�I�5
0

0 ��I�4 − 5�I�3 + 10�I�2 + 20�I� + 4

240�I�5

 . �11�

The above stochastic evolution equation of the vector � is
thus a bivariate Ornstein-Uhlenbeck process �26� and in the
long-time limit it is described in the frequency domain by a
power spectral density function �27�

S��� =
1

2
T2
� K

T2
+ i�
 + ���−1

��T�KT

T2
− i�
 + ���−1

.

�12�

In Fig. 1 we plot the trace of the power spectrum matrix S���
for the case of 85Rb �I=5/2�. The heights of the spin-noise
resonance peaks of the upper and lower hyperfine multiplets,
appearing at −�L and �L, respectively, are determined by the
total noise power and the respective decay rates. These are
given in terms of the diagonal elements of the fluctuation and
drift matrix, respectively. They are both affected by the hy-
perfine level multiplicity, leading to a stronger spin-noise
resonance of the upper hyperfine multiplet. Considering only
positive frequencies from now on, it easily follows that the
power spectrum of the observable �sy
 will be given by

FPSD�sy

��� =

Tr�S��� + S�− ���
2

, �13�

which for �L�1/T2 can be approximately written as

FPSD�sy

��� =

1

4

�
i=1

2
�ii

2/T2

�� − �L�2 + �Kii/T2�2 . �14�

B. Stochastic evolution of the paramagnetic Faraday
rotation angle

In the experimental arrangement we will be considering in
the following, a linearly polarized and off-resonant probe
laser interacts with the unpolarized alkali-metal vapor. The
effect of the atoms on the light is described by the polariz-
ability tensor, which is an operator acting on the ground
states of the atoms. If we write �=�+ i�c /2, where �=�
−�0 is the detuning and �c is the FWHM of the optical
absorption line due to collisions with buffer gas atoms, then
the polarizability is given to first order in 1/� by �28�

� = −
1

�

DgeDeg

�
, �15�

where Dge= PgdPe and Deg= PedPg with Pg and Pe being the
projection operators to the ground and excited state mani-
fold, respectively, and d the electric dipole moment operator.
By use of the tensor operator formalism, it can be shown
�29� that � can be decomposed into a scalar and a vector part

� = − �0 + 4�0sySy , �16�

where �0=re�
2�0fD2 /8
2�, Sy = �x1x1

†−x−1x−1
† � /2 is the ŷ

component of the Poincaré spin describing the photon polar-
ization, x±1= � �ẑ± ix̂� /�2, re is the classical electron radius,
and fD2 is the D2-transition oscillator strength. The eigenpo-
larizations of � are x±1 with corresponding eigenvalues
±1/2. Thus the refraction index for �± light will be n±=1
−2
�N��0�1�2sy�, where �N� is the alkali-metal atom num-
ber density. The Faraday rotation angle � induced by one
atom in the measurement volume is then given by

� = 
�n+ − n−�
l

�
=

8
2�0

A�
sy � �0sy , �17�

where l and Al are the length and volume of the vapor, re-
spectively, probed by the laser. Taking into account the fact
that the resonant absorption cross section for a J=1/2→J�
=3/2 transition with radiative width � and total width �c is
�30� �0= �2



�
�c

and the integrated absorption cross section is
�����d�=2
2crefD2, we can write �for ���c�

� = �0sy, �0 =
1

2


�2

A

�

�
. �18�

Accordingly, the fluctuations of �sy
 will appear in the fluc-
tuations of ��
, as well as of ��
=�0�i=1

N �sy
�i�
, which is the

measured Faraday rotation angle resulting from the uncorre-
lated contributions of N atoms probed by the laser beam,
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FIG. 1. Calculated noise spectrum Tr�S����, in units of Hz−1,
for �L=104�s−1, 1 /T2=0.1�L and I=5/2. The noise peaks of both
hyperfine multiplets can be approximated by Lorentzians with half
widths given, in terms of 1/T2, by the diagonal elements of the drift
matrix K.
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where sy
�i� is the ŷ component of the �i�th atom’s spin. The

power spectral density of ��
 will then be

FPSD��

��� = N�0

2FPSD�sy

��� . �19�

For an order-of-magnitude estimate of the spin-noise-
induced rotation angle noise, we find that for the operating
detuning and probe laser beam area �see Sec. III for the
numerical values� �0�10−11 rad. Furthermore, based on Eq.
�13� and Fig. 1, we find that the fluctuations of �sy
, �sy, are
on the order of 10−3 /�Hz. Therefore, for N=1012 atoms, the
fluctuations of � should be ��=�N�0�sy �10 nrad/�Hz,
which is roughly at the level of photon shot noise limited
rotation angle noise, and consistent with our measurements
as described in the following.

III. EXPERIMENT

The experimental setup used for our measurements of
spin noise is depicted in Fig. 2. We use a cylindrical glass
cell �2 cm diameter, 2 cm inside length� filled with rubidium
metal of natural isotopic abundance and with 300 torr of ni-
trogen buffer gas to suppress transit-time broadening. The
cell is located in an oven heated by hot air flow to tempera-
tures in the range of 80–120 °C. The oven with the cell
reside inside a magnetic shield apparatus, which contains
coils for the application of the desired magnetic fields. A
static magnetic field is needed in order to shift the spin-noise
spectrum to a frequency range void of technical noise
sources. The Faraday rotation angle noise spectrum is peaked
at the Larmor frequency, which is 25 kHz for an applied field
Bz=53.6 mG. The probe laser, an external cavity diode laser
�New Focus 6224� with an elliptical beam profile of FW1/e
dimensions of 0.6�2.3 mm �measured with a CCD camera�,
is red detuned by 45 GHz from the D2 resonance. The laser
frequency is actively locked at the desired detuning with a
Fabry-Pérot cavity. Before entering the cell, the laser is po-

larized at 45° with respect to the ẑ axis. The rotation of the
probe laser polarization after traversing the cell is measured
with a balanced polarimeter, which feeds the input of the
spectrum analyzer, which is set at a frequency span of
6.4 kHz with an 8 Hz frequency bin width. Each spectrum
was averaged for about 30 min. The measured signal V has a
power spectral density, in units of V2/Hz, given by

FPSDV
��� = �2PtrRL�2�FPSD��


��� + ����2� + Ve
2, �20�

where Pt is the transmitted probe laser power, r
�0.5 mA/mW is the photodiode responsivity, and RL
=3.9 k
 is the photodiode load resistor. The term in Eq. �20�
involving �� represents the photon shot noise, where ��

�1/2�Ṅ is the rotation angle measurement shot noise limit

�30� after counting Ṅ	 photons in a measurement time 	,

with Ṅ= Pt / �hc /�� being the photon flux. The photon shot
noise dominates the background noise of the spectra shown
in Fig. 3, as can be verified from the scaling of the back-
ground with �Pinc, where Pinc is the incident probe laser
power. A dark electronic background of Ve=16 nV/�Hz is
also present. We have verified that the integrated noise power
of the Lorentzian spin-noise spectrum scales as �Rb�, where
�Rb� is the rubidium number density, as should be the case
for spin-noise signals from uncorrelated atoms. This is
shown in Fig. 4�a�.

IV. DATA ANALYSIS

The total half-width of the spin resonance � /2 is given by

�/2 = �K11�1/Tse + 1/Tsd� + �trans, �21�

where �trans is the transit time broadening due to the finite
interaction time with the probe beam �the relaxation rate due
to the diffusion of the alkali-metal atoms to the depolarizing
cell walls is negligible�. The correction factor �=1.038
comes about as follows. The quadratic Zeeman effect shifts
the Larmor frequency of the lower hyperfine manifold by
45 Hz at our operating magnetic field. Furthermore, the
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FIG. 2. �Color online� Experimental scheme for low-field spin-
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Lorentzian power spectrum is approximate. We thus use the
exact result of Eq. �13� and fit it with a single Lorentzian.
The half-width of the latter is �K11/T2. The spin-exchange
cross section is �se=2�10−14 cm2, whereas the spin-
destruction cross sections for Rb-Rb and Rb-N2 collisions
are �31� �sd

Rb-Rb=9�10−18 cm2 and �32� �sd
Rb-N2 =1

�10−22 cm2, respectively. It is clear that for our operating
parameters, the contribution of Rb-Rb spin-destruction colli-
sions to transverse relaxation is negligible and will not be
considered henceforth. The transit time broadening is �33�
�trans=5.8D /R2, where R=�r1r2 is the geometric mean of the
probe laser beam elliptical profile dimensions and D
=D0�p0 / p��T /T0�3/2 is the Rb-N2 diffusion coefficient with
�32� D0=0.28 cm2/s, p0=760 torr, T0=424 °K, p the nitro-
gen pressure, and T the cell temperature. The error of �trans is
estimated �34� to be at the 20% level. All together, the half-
width � /2 will be

��T�/2 = �K11��sev̄Rb-Rb�Rb� + �sd
Rb-N2v̄Rb-N2

�N2�� + 5.8D/R2,

�22�

where the temperature dependence of � /2 stems from the
temperature dependence of the average relative velocities
v̄Rb-Rb and v̄Rb-N2

, the diffusion coefficient D, and the ru-
bidium number density �Rb�. In Fig. 3 we show measured
spin-noise spectra for a specific temperature and for various
values of the incident probe laser power. For each of these

values, the spin-noise signal �in units of nV/�Hz� is fitted to
a function of the form �a+ b

�f−fo�2+��/2�2 from which the

HWHM � /2 is extracted. The actual half-width � /2 for that
temperature is found by a linear extrapolation to zero probe
laser power in order to eliminate the contribution of optical
pumping. From the linear dependence of the half-width on
intensity, we find that optical pumping adds 45–80 Hz/mW
to � /2, depending on temperature, in rough agreement with
R=50 Hz/mW found by using the expression R
= �1/2
����������d�, where ���� is the photon flux and
���� the optical absorption cross section. In Fig. 4�b� we
show the measured spin-noise resonance half-widths, super-
imposed on the spin-relaxation rates stemming from the vari-
ous terms of Eq. �22�, together with their error bands, as well
as the total rate, versus the number density of rubidium. The
latter was measured by a combination of absorption spectros-
copy and Faraday rotation �28� at a longitudinal magnetic
field By =55 G and was found to be smaller than that pre-
dicted by the Killian formula �35�, probably due to the treat-
ment of the specific glass �pyrex� cell. Specifically, we cali-
brated the Faraday rotation spectra at low temperatures
�70–80 °C� by absorption measurements and used this cali-
bration at the higher temperatures. This was done in order
not to be dependent on the near-resonant line shape of the
Faraday rotation angle, since the operating detuning was lim-
ited by the mode-hop-free scanning range of our diode laser
around the D2 resonance �60 GHz�.

V. CONCLUSIONS

We have shown that spin-relaxation rates in alkali-metal
vapors can be extracted in a nonperturbative way by an off-
resonant probe laser sensitive to the spin fluctuations of the
alkali-metal vapor. The extracted rates are consistent with the
known rates, to within 10%, limited by the uncertainty in
rubidium number density. This method could also be used to
directly measure relaxation rates due to anisotropic interac-
tions in alkali-metal collisions with noble gas atoms. This
could be accomplished by extending the previous single
channel measurement to a measurement of spatiotemporal
correlations of the spin-noise signals induced into the polar-
ization of two different probe beams. Such correlations will
essentially contain a selectively enhanced contribution
of certain collision histories of the Rb atoms to spin relax-
ation, i.e., they will contain a nonzero collisional average
��r ·S��r ·K�
, where S and K are the alkali-metal electron
spin and the noble gas atom nuclear spin, respectively, and r
is the vector joining the nuclei of the two collision partners.
Accordingly, long trajectories, in which such a collisional
average will tend to zero, will be suppressed by e−	/T2, where
	 is the alkali-metal atom diffusion time from one probe
beam to the other. The relaxation rate due to anisotropic
interactions in Rb– 3He collisions is calculated �36� to be
about 3% of the total Rb spin destruction rate due to Rb– 3He
collisions. At the magnetic field used for this work, the latter
would amount to about 10% of the total transverse relaxation
rate, rendering the anisotropic contribution negligible. How-
ever, by working at an even lower magnetic field and higher
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Rb densities, one can enter the regime of suppression of the
spin-exchange relaxation �37�. For example, for �Rb�
�1014 cm−3, and �L�2
�1 kHz, it follows �38� that the
spin-exchange relaxation rate will have been suppressed to
�se�2
�25 Hz, in which case the anisotropic rate would
amount to a few percent of the total relaxation rate. To single
out anisotropic rates from different kinds of correlations

would, however, still require a challenging precision of the
width extraction at the percent level.
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