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We  recently  unraveled  a major  inconsistency  in  the  traditional  description  of radical-pair  quantum
dynamics  by  studying  single-molecule  quantum  trajectories  and  comparing  their  prediction  with
Haberkorn’s  master  equation.  A comment  by Jeschke  claimed  that the inconsistency  arises  because  we did

not properly  include  quantum  state  projections  in the traditional  approach.  We  here  show  that  Jeschke
stipulates  quantum  trajectories  involving  unphysical  quantum  states  with  negative  populations.  More-
over,  the  author’s  Monte  Carlo  simulation  and  its  agreement  with Haberkorn’s  master  equation  is  a
demonstration  of  an  algebraic  tautology,  establishing  the  consistency  of  an  unphysical  master  equation
with  circularly  defined  unphysical  trajectories.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Quantum trajectories are a physically intuitive way of looking
t the time evolution of an open quantum system from the per-
pective of pure state evolution of a single system [1]. Averaging
uch single-system trajectories should ideally reproduce the mas-
er equation satisfied by the system’s density matrix. It is the latter
sed in calculations when the relevant experiments do not probe
ingle quantum systems, i.e. when experimental observables are
ndeed described by particular moments of the density matrix �.

Which is the fundamental master equation satisfied by � has
een at the heart of an ongoing debate in spin chemistry, which
eals with spin-selective chemical reactions involving radical-ion
airs. Using a number of theoretical arguments [2–7] recently
eviewed comprehensively [8], we have shown that the conven-
ional (Haberkorn) master equation used in most spin chemical
alculations can not stand as a fundamental theory, and we have
erived a new master equation based on several concepts of quan-
um information science. By fundamental we mean the inherent
uantum dynamics of the radical-pair mechanism, that is, apart
rom any additional spin relaxation effects that might or might not

e relevant in a given experiment.

In simple quantum systems quantum trajectories identically
eproduce the master equation. For example, considering the decay

E-mail address: ikominis@physics.uoc.gr

ttp://dx.doi.org/10.1016/j.cplett.2016.02.015
009-2614/© 2016 Elsevier B.V. All rights reserved.
of a two-level atom due to spontaneous emission [9], a Monte Carlo
simulation using single-atom trajectories involving jumps identi-
cally reproduces the atomic master equation, which is equivalent
to the optical Bloch equations.

In more complex systems such an ideal circumstance, i.e. an
exactly known master equation identically reproduced by quan-
tum trajectories, might not be the case, since the master equation
is most often some sort of approximation of the underlying dynam-
ics. We recently [7] explored the internal consistency of both our
theory, and for the first time, also Haberkorn’s theory, looking at
radical-pair spin dynamics from the perspective of single-molecule
quantum trajectories. In our approach we  can produce well-defined
and physically acceptable single-radical-pair trajectories, but cast-
ing the physical picture these trajectories seamlessly describe
into a master equation has been a non-trivial exercise still under
development. In parallel [7], we discovered a major inconsis-
tency in Haberkorn’s approach, showing that the trajectories one
is led to from Haberkorn’s perspective lead to predictions far off
Haberkorn’s master equation.

In his comment [10], Jeschke claims that we  underestimated
the capabilities of Haberkorn’s theory by not including quantum
state projections, purportedly part of the traditional theory, taking
place in unsuccessful recombination events of the radical-pair. The
author went on to define what sort of quantum trajectories are

supported by the traditional theory and show that they identically
reproduce the traditional master equation.

Unfortunately, the author introduces unphysical trajectories
involving non-existent quantum states, in particular ‘density

dx.doi.org/10.1016/j.cplett.2016.02.015
http://www.sciencedirect.com/science/journal/00092614
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atrices’ with negative eigenvalues, while the author’s Monte
arlo simulation is a computing-time-intensive demonstration of
n algebraic tautology, concerning unphysical trajectories circu-
arly defined by the very same terms appearing in Haberkorn’s

aster equation.

. Jeschke’s trajectories

Haberkorn’s master equation reads d�/dt = −i[H, �] −
S(QS� + �QS)/2 − kT(QT� + �QT)/2, where the Hamiltonian

 drives unitary dynamics, and the other two terms form
aberkorn’s singlet and triplet reaction operators, with kS and kT
eing the singlet and triplet recombination rates, and QS and QT
he singlet and triplet projection operators, respectively. The pro-
ectors have three properties: (�1) orthogonality, QSQT = QTQS = 0,
�2) completeness, QS + QT = 1, and (�3) idempotence, Q2

S = QS,
2
T = QT. The unit operator is 1.

Using �2, Jeschke rewrittes Haberkorn’s master equation as

�/dt = −i[H, �] − kS� + kS
QT� + �QT

2
−  kT� + kT

QS� + �QS

2
(1)

ased on (1), Jeschke postulates trajectories with five events
E1–E5) potentially realized, with their respective probabilities,
ithin the time interval dt.  Specifically, the author considers two

reaction attempts’, one in the singlet channel with probability kSdt,
nd one in the triplet channel with probability kTdt.  If the singlet
ttempt is realized, then (E1) with probability p1 = kSdtTr{�QS} the
ttempt is successful due to singlet recombination, while (E2) with
robability p2 = kSdtTr{�QT} the attempt is unsuccessful and the
adical-pair is ‘projected’ to

U
S = QT� + �QT

2Tr{�QT} (2)

f the triplet attempt is realized, then (E3) with probability
3 = kTdtTr{�QT} the attempt is successful due to triplet recombi-
ation, while (E4) with probability p4 = kTdtTr{�QS} the attempt is
nsuccessful and the radical-pair is ‘projected’ to

U
T = QS� + �QS

2Tr{�QS} (3)

inally, (E5) if neither the singlet nor the triplet attempt is real-
zed, with probability p5 = 1 − kSdt − kTdt,  the radical-pair evolves
nitarily with the Hamiltonian H.

. Fallacy: �U
S and �U

T are not physical states

Let us consider the radical-pairs undergoing an ‘unsuccessful’
inglet reaction, so that they are ‘projected’, as Jeschke claims, to
U
S . We  have used quotes in the word ‘projected’, because �US does
ot represent a projection. If a pure state | 〉 is projected to another
tate by some projector P, then | 〉 → P| 〉, and the density matrix

 → P�P†. The state �US is not of such a form.
Importantly, �US (and similarly �UT ) is not a physical density

atrix. In other words, Jeschke asserts that in each time step dt,
 fraction p2 and p4 of the radical-pairs are ‘projected’ to non-
xistent states. We  will now formally prove this, and in a following
ection we will demonstrate numerically that Jeschke’s unphysical
rajectories involve ‘density matrices’ having negative eigenvalues.

heorem. For any physical radical-pair state described by the den-
ity matrix �, the transformation �U (and similarly �U) is not a physical
S T
tate, because it can neither be written as a pure state �US = | 〉〈 |
or some | 〉, nor as a mixture of pure states, �US =

∑
 p | 〉〈 |,

eighted by some non-negative probabilities p summing up to unity.
tters 648 (2016) 204–207 205

Proof. Any radical-pair state described by the physical density
matrix � can in general be written as

� = 1�1 = (QS + QT)�(QS + QT)

= QS�QS + QT�QT + QS�QT + QT�QS (4)

Using the projector properties �1 and �3, it is

�US = QT� + �QT

2Tr{�QT}
(4)= 2QT�QT + QT�QS + QS�QT

2Tr{�QT} (5)

If there is non-zero singlet–triplet coherence in the state �, as is
the case in general, the terms QT�QS + QS�QT will be non-zero,
hence the pseudo-state �US contains singlet–triplet coherence with-
out singlet population, since by property �1 it is QS�

U
S QS = 0. It

is impossible for any physical state, pure or mixed, to contain
singlet–triplet coherence without singlet population. In general,
(see pp. 39 in the textbook [11]) the off-diagonal matrix elements
of a physical density matrix satisfy the inequality |�mn|2 ≤ �nn�mm.
Thus �mn is zero if �nn or �mm is zero. �

Thus, Jeschke’ ‘trajectories’ involve non-existent states, hence
his approach is not a quantum trajectory analysis, since it cannot
provide a physical single-molecule state evolution, i.e. it cannot
provide a succession of physical radical-pair states | 〉 describing
single-molecule dynamics. That is, taking as example the particular
model considered in [7,10], i.e. a radical-pair with one nuclear spin,
if one starts the simulation from an initial state like | 〉  = |S〉⊗|⇑〉
(singlet for the two electrons and up for the nuclear spin), Jeschke’s
approach cannot provide the states | 〉  that the single radical-pair
might assume after t = 0, since if in a particular trajectory one of the
two ‘unsuccessful reaction attempts’ is realized, the state would be
‘transformed’ to �U

S or �U
T , which is not a physical state. Although

quantum trajectories are about pure state evolution, similar results
follow if one were to start the evolution with a mixed state, i.e. at
some point in time some trajectories will become physically non-
existent.

We will show next that Jeschke’s Monte Carlo simulation and its
‘perfect’ agreement with the master equation represents a circular
argument merely demonstrating an algebraic tautology. We  will
then use this tautological approach to show that any kind of master
equation, no matter how absurd, can be recast into equally absurd
‘quantum trajectories’.

4. Updating the density matrix

To this end, we first note that Jeschke states that events E1–E5
identically reproduce Haberkorn’s master equation. For the trajec-
tories to identically reproduce the master equation, a relation of
the following form must hold

�t+dt = p1�1 + p2�2 + p3�3 + p4�4 + p5�5 (6)

That is, event j leads to a system’s density matrix �j, which is
some transformation of �t, the system’s density matrix at time t.
Hence, �t+dt is the weighted sum of the system’s density matrix
�j resulting from the realization of event j during dt,  the weights
being the probabilities pj. Then the master equation follows from
d�/dt = (�t+dt − �t)/dt. Plugging in (6) Jescke’s events E1–E5 we get

�t+dt = p1 × �1 + p2 × �US + p3 × �3 + p4 × �UT

+ p5 × (�t − idt[H,  �t]) (7)

By setting �1 = �3 = 0 we  identically retrieve Haberkorn’s master
equation. Thus, Jeschke considers that if the radical-pair recom-

bines (events E1 and E3) it contributes zero to the systems’s state
at time t + dt.  We  will revisit this assertion later on.

As evident from (7) and the definitions (2) and (3),
Jeschke’s physically non-existent ‘trajectories’ are just an algebraic
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Figure 1. (a) Master equation and Monte Carlo simulation comparison for the same
Hamiltonian used in [10], using 250 000 trajectories as defined by Jeschke. The agree-
ment is deluding, since Jeschke’s trajectories describe physically non-existent states.
This is shown in (b) depicting the eigenvalues of � resulting from evolving a sin-
gle  trajectory. The system is 8-dimensional, there are 6 eigenvalues approximately
equal to zero, one eigenvalue larger than 1 and one negative eigenvalue, ensuring
06 I.K. Kominis / Chemical Phy

eformulation of the master equation, so there is no need to wait
or 500 000 trajectories to run at the computer, since by their circu-
ar definition through the terms appearing in the master equation,
hey will be on top of the master equation prediction, as in Jeschke’s
imulation.

. ‘Proving’ a tautology

With this approach, one can ‘prove’ the consistency of any
aster equation, even the most absurd, with equally absurd and

ircularly defined trajectories, thus defeating the purpose of using
uantum trajectories to understand the time evolution of an open
uantum system at the single-molecule level.

Indeed, take as master equation d�/dt = −i[H, �] + kSRS(�) +
TRT(�), where RS(�) and RT(�) are some arbitrary reaction
perators having no correspondence to physical reality. Their
races, Tr{RS(�)} and Tr{RT(�)}, should equal −Tr{�QS} and
Tr{�QT}, respectively, so that we indeed describe the spin-

elective decay of radical-pair population, i.e. so that it is
Tr{�}/dt = − kSTr{�QS} − kTTr{�QT}, where we also used the
act [12] that Tr{[H, �]} = 0. There are infinite absurd reac-
ion operators satisfying this constraint and also keeping � a
ositive-definite, hence physical density matrix. For example,
ake RS(�) = − 1

2 (QS� + �QS) − 1
69 QT�QS − 1

69 QS�QT and RT(�) =
1
2 (�QT + QT�) − 1

131 (� − Tr{�}).
Now, following Jeschke’s argument, write d�/dt =
i[H, �] − kS� − kT� + kSR′

S(�) + kTR′
T(�), where R′

S(�) = RS(�) + �
nd R′

T(�) = RT(�) + �. Here are Jeschke’s ‘trajectories’: (E1)
ith probability p1 = kSdtTr{�QS} we have a singlet recombina-

ion (successful singlet reaction attempt), (E2) with probability

2 = kSdtTr{�QT} we have a ‘projection’ to the ‘state’
R′

S
(�)

Tr{�QT}
unsuccessful singlet reaction attempt), (E3) with probability
3 = kTdtTr{�QT} we have a triplet recombination (successful
riplet reaction attempt), (E4) with probability p4 = kTdtTr{�QS}
e have a ‘projection’ to the ‘state’

R′
T(�)

Tr{�QS} , and with probability

5 = 1 − kSdt − kTdt we have Hamiltonian evolution.
Of course, normalization alone does not render any matrix

 physically acceptable density matrix. Indeed, the ‘states’
′
S(�)/Tr{�QT} and R′

T(�)/Tr{�QS} are physically as non-existent as
U
S and �UT , yet properly normalized [13]. By using Jeschke’s update
ule for �t+dt, it is

t+dt = p1 × 0 + p2 × R′
S(�t)

Tr{�QT} + p3 × 0 + p4 × R′
T(�t)

Tr{�QS}
+ p5 × (�t − idt[H, �t]) (8)

xactly retrieving the master equation d�/dt = −i[H, �] +
SRS(�) + kTRT(�)!

Even though the Monte Carlo simulation is expected, by its cir-
ular design, to be on top of the master equation prediction, it is
nstructive to look at the simulation results, presented in Figure 1.
or the same Hamiltonian used by Jeschke we calculate dIz, the
uclear spin deposited to the neutral reaction products during the
ime interval dt,  using Haberkorn’s master equation and Jeschke’s
rajectories. The result is shown in Figure 1a, where we also show
he integral

∫
dIz/Ithermal, the total nuclear spin of the reaction

roducts at the end of the reaction, normalized by the thermal
quilibrium value. The perfect agreement between master equa-
ion and Monte Carlo is illusionary, stemming from the circularly
efined trajectories postulated by Jeschke.

That these trajectories describe physically non-existent states

s revealed by considering a single trajectory. Indeed, running
eschke’s simulation for one trajectory at a time can lead to tra-
ectories shown in Figure 1b, where we plot the eigenvalues of �,
he single-molecule state evolving according to Jeschke’s rules. It is
the normalization of �. (c) A similarly deluding agreement between some master
equation having arbitrary reaction operators RS and RT, with circularly defined and
physically non-existent trajectories.

seen that the eigenvalues of � exceed 1, and there are also negative
eigenvalues securing the normalization Tr{�} = 1. Thus the single-
molecule states entering Jeschke’s trajectories do not have any physical
correspondence. Finally, in Figure 1c we ‘demonstrate the perfect
agreement’ between another master equation involving the ran-
domly chosen reaction operators RS and RT previously introduced,
with the equally unphysical trajectories tautologically postulated
by generalizing Jeschke’s approach.

Although Figure 1a and c do not convey any useful information,
they are instructive. This is because the traces dIz are qualitatively
very similar, yet the integrated nuclear spin, shown in the insets of
Figure 1a and c, is 260% different. This difference is brought about by
a minute change in the reaction operators, demonstrating the sen-
sitivity of CIDNP to the detailed form of the reaction operators and
elucidating the point made in [7]. That is, correcting Haberkorn’s
phenomenological and inconsistent reaction operators will lead to
significant corrections in the properties of photosynthetic reaction
centers extracted from CIDNP data.

6. Properly updating the density matrix

Having formally proved that Jeschke’s analysis cannot stand
physically, we  will now elaborate on some more subtle prob-
lems with Jeschke’s trajectories. In particular, we will explain why
obtaining a master equation for a radical-pair ensemble is a non-
trivial task, even though the dynamics at the single-molecule level
following from our approach are straightforward.

Jeschke, albeit incorrectly, does accommodate the concept we
introduced [2], namely that unsuccessful reaction events have a

physical effect on the surviving radical-pairs’ state. When trying
to obtain the master equation for the ensemble of radical-pairs,
that is, when trying to describe an actual experiment involving a
macroscopic number of radical-pairs, we don’t have access to the
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S(�)} = Tr{�} + Tr{RS(�)}. Since Tr{RS(�)} = − Tr{�QS} and Tr{�} =
′
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ure states | 〉 describing individual radical-pairs. The reason why
his is so are the random projections to the singlet and triplet states
events K1 and K2 of [7]). If it were not for these projections, the
adical-pairs would evolve unitarily and their state would be a well
nown pure state | 〉  evolving by the Hamiltonian. In that case
he density matrix would be needed only to compactly account
or an initially mixed state, e.g. random nuclear spin orientations.
ut in the presence of these random projections, the density matrix
ecomes necessary even when the initial radical-pair state is a perfectly
ell known pure state.

Thus, in the ensemble picture at any given moment we have
 collection of pure radical-pair states described by �. Jeschke’s
pdate rule is not applicable in this realistic case. Jeschke cor-
ectly considers that when dealing with a single-molecule trajectory
tarting from some pure initial state | 〉, in the event that the
adical-pair recombines (event E1 and E3), this particular molecule
ill contribute a zero to all observables from the instant of recombi-
ation and on. This is how we take into account the recombination
vent in our Monte Carlo analysis [7], and this is also how Jeschke
oes it.

But to use the same reasoning in updating the density matrix,
hich describes a collection of pure states having various phases

due to the S and T projections) is again circular and incorrect. This is
ecause in the event of recombination, the new radical-pair density
atrix describing a collection of pure states, �t+dt, will equal �t

inus the pre-recombination state of the recombined molecules.  That
s, �1 and �3 in (6) should be � − �S and � − �T, where �S and �T are
he pre-recombination states of the radical-pairs that recombined
n the singlet and triplet channel during dt,  respectively. Obtaining
S and �T has been at the core of our work, and is a non-trivial task

hat we have addressed using the theory of quantum retrodiction
6]. It is this non-trivial task prohibiting us to translate the simple
hysics described by our quantum trajectories into an exact master
quation. Moreover, it is this difficulty that requires the genuine
est of our master equation with our physical quantum trajectories
erformed in [7].

. Constraint for kS = kT

To our understanding, casting Haberkorn’s theory in terms of
uantum trajectories in the general case kS /= kT is impossible,

ust because Haberkorn’s master equation is a phenomenological
heory unable to capture the fundamental quantum dynamics of
adical-pairs. Nevertheless, in [7] we formally proved a constraint
hat has to be met  by the contenders of Haberkorn’s approach,

 constraint that has gone unnoticed by Jeschke. In the special
ase kS = kT ≡ k, Haberkorn’s master equation becomes d�/dt =
i[H, �] − k�,  and can be solved exactly. The solution is �t = e−ktR,
here dR/dt = −i[H, R]. This describes the evolution of radical-
airs just undergoing unitary evolution until they recombine. In
rder to prevent ill-fated future attempts to introduce single-
olecule trajectories from the perspective of Haberkorn’s theory

n the general case kS /= kT, we reiterate that any such attempt
ust meet the above constraint, i.e. leave the radical-pair state

ndisturbed when kS = kT.

. Conclusions

As mentioned in the introductory remarks, the purpose of using
uantum trajectories is not to stipulate unphysical states in order to
rtificially ‘match’ some master equation, but to simulate realistic

volution of single quantum systems, that in principle is experi-
entally observable if single quantum systems are addressable, as

.g. in atom-cavity [15] or trapped-ion [14] experiments. We stress
[
[

tters 648 (2016) 204–207 207

that in our approach we provide a clear and physically meaningful
analysis of single-radical-pair quantum trajectories, whereas it is
our master equation that needs to be further refined in order to be
perfectly consistent with the trajectory analysis.

In contrast, Jeschke’s approach defeats the purpose of using
quantum trajectories to understand single-radical-pair quantum
dynamics. On the other hand, Jeschke’s considerations fruit-
fully serve to further illustrate the inadequacy of Haberkorn’s
conventional theory from a fundamental perspective, highlight-
ing subtle details one has to consider when addressing the
fundamental quantum dynamics of spin-selective radical-pair
reactions.

Regarding any future attempts analogous to Jeschke’s, we  ought
to clarify that the proponents of Haberkorn’s approach have to
surmount the following impasse: if they concede that the physi-
cally acceptable projections we  introduced, namely to the singlet
and triplet state (events K1 and K2 outlined in [7]) are indeed
part of the picture, then Haberkorn’s master equation fails when
kS = kT. If they claim that there is no effect whatsoever on surviv-
ing radical-pairs besides Hamiltonian evolution, then Haberkorn’s
master equation fails when kS /= kT. At this point, the proponents of
Haberkorn’s approach might claim that radical-pair spin dynamics
are not amenable to any quantum trajectory analysis whatsoever,
or that one needs two fundamental theories (yet to be formulated),
one for those radical-pairs for which kS = kT and another one for
those radical-pairs for which kS /= kT. For obvious reasons, both of
these potential claims are scientifically unacceptable.

The conclusions of [7] are still valid. We have established the
inadequacy of spin chemistry’s foundations without the need of
any experiment. Moreover, the theoretical interpretation of a large
number of CIDNP experiments must be carefully revisited, since
Haberkorn’s theory forces the physical information of interest,
hiding in the Hamiltonian, to attain incorrect values due to the
unphysical reaction terms describing radical-pair kinetics in pho-
tosynthetic reaction centers. As alluded to in Figure 1a and c, and as
we will show in detail in forthcoming works, CIDNP measurements
are exquisitely sensitive to fine details of the reaction operator,
hence the corrections brought about in the physical information
extracted from data after introducing consistent reaction kinetics
can be quite severe.
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