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Quantum trajectories in spin-exchange collisions reveal the nature
of spin-noise correlations in multispecies alkali-metal vapors
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Spin-exchange collisions in alkali-metal vapors underlie several fundamental and applied investigations
such as nuclear structure studies and tests of fundamental symmetries, ultrasensitive atomic magnetometers,
magnetic resonance, and biomagnetic imaging. Spin-exchange collisions cause a loss of spin coherence and
concomitantly produce spin noise, both phenomena being central to quantum metrology. We develop here the
quantum-trajectory picture of spin-exchange collisions, consistent with their long-standing ensemble description
using density matrices. We then use quantum trajectories to reveal the nature of spin-noise correlations
that spontaneously build up in multispecies atomic vapors, frequently utilized in the most sensitive spin
measurements.
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I. INTRODUCTION

Atomic spin-exchange collisions are fundamental for a
broad range of exploration, from nuclear physics and as-
trophysics to atomic spectroscopy, quantum metrology, and
medical imaging. Spin-exchange collisions have been studied
in the context of hyperfine transitions in hydrogen masers
[1] and radio emission of interstellar hydrogen [2]. Spin-
exchange collisions in alkali-metal vapors have been central
in producing nonequilibrium magnetic substate populations
by optical pumping [3]. Spin-exchange optical pumping [4,5]
has led to hyperpolarized noble gases used in medical imag-
ing [6], spectroscopy [7], and numerous studies of nucleon
spin structure [8]. Furthermore, the intricate physics of spin-
exchange collisions [9] has spurred the development of ultra-
sensitive magnetometers [10], allowing new precision tests
of fundamental symmetries [11,12] and novel biomagnetic
imaging applications [13,14]. Spin-exchange collisions cause
spin coherence relaxation, and since relaxation and fluctua-
tions are intimately connected, spin-exchange collisions are
also underpinning spin noise spectroscopy [15–22].

So far, however, the understanding of spin-exchange colli-
sions has been based on ensemble descriptions with density
matrix master equations, which capture neither the physics
at the single-atom level nor the spontaneous fluctuations of
the collective spin or any phenomena stemming therefrom.
We here use quantum measurement theory to shed light on
the quantum foundations of spin-exchange collisions. We
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develop the quantum-trajectory picture of spin-exchange col-
lisions [23] and demonstrate the consistency of our unravel-
ing with the well-established density matrix master equation
[24]. Quantum trajectories can be used to understand, at the
single-atom level, alkali-metal–alkali-metal or even alkali-
metal–noble-gas collisions [25]. We demonstrate how quan-
tum trajectories can seamlessly produce spin noise from first
principles. Moving to dual-species vapors, we use quantum
trajectories to reveal the nature of spin-noise correlations that
spontaneously build up [26,27]. As a by-product of the above,
we present an approach to the stochastic terms augmenting
the density matrix master equation describing spin-exchange
collisions.

The structure of this article is the following. In Sec. II
we briefly reiterate the long-standing ensemble description of
spin-exchange collisions in hot atomic vapors, which uses a
density matrix master equation. In Sec. III we introduce the
quantum-trajectory picture of spin-exchange collisions and
demonstrate its consistency with the ensemble description in
physical scenarios involving large nonequilibrium spin polar-
izations but not fluctuations, i.e., in scenarios tractable with
the master equation. We then show how quantum trajectories
can seamlessly produce spin noise, which cannot be accounted
for by the spin-exchange master equation. In Sec. IV we
move to dual-species vapors and establish the consistency
of the quantum-trajectory approach with the coupled master
equations of the ensemble approach, again in physical sce-
narios involving large nonequilibrium spin polarizations but
not fluctuations. In Sec. V we use quantum trajectories to
address an open problem in spin-noise spectroscopy, namely,
the spin-noise correlations that spontaneously build up in
dual-species vapors. Finally, we augment the master equations
describing spin-exchange collisions with physically realistic
noise terms, rendering the description of spin noise possi-
ble at the ensemble level. The stochastic master equations
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provide an independent verification of the nature of spin-noise
correlations.

II. SPIN-EXCHANGE COLLISIONS:
ENSEMBLE DESCRIPTION

Spin-exchange (SE) collisions between two atoms A and
B, of the same or different species, result from the different
interaction potentials VS and VT for the singlet and triplet
total spin of the colliding partners, respectively. If sa and
sb are the electron spins of the colliding atoms, the singlet
and triplet projectors are PS = 1

41 − sa · sb and PT = 3
41 +

sa · sb.1 Introducing the exchange operator Pe = PT − PS ,
the SE interaction potential VSE = PSVS + PT VT is written
as a sum of a spin-independent and a spin-dependent term
VSE = V01 + V1Pe. Only the latter is of interest for the unitary
operator evolving the initial into the final spin state, U =
exp(−i

∫
dt V1Pe).2 Defining φ = ∫

dt V1 and noting that
P2

e = 1, we get U = cos φ1 − i sin φPe.3

For a single-species vapor of atoms A with number density
[A] the ensemble description of SE collisions follows either
[29] by using Pe and considering the SE rate 1/TSE = [A]vσSE

or by using U [24] and identifying sin2 φ/T with 1/TSE,

where T the time between collisions and sin2 φ the collisional
average of sin2 φ. Here σSE is the SE cross section and v

the mean relative velocity of the colliding atoms. Neglecting
the SE frequency shift [24], both approaches result in the
same master equation. For following use, we here briefly
reiterate the first approach.

Let two atoms A and B collide, initially assuming they
are of different species, with their (uncorrelated) precollision
states being ρa and ρb. Hence the combined two-atom initial
state is ρa ⊗ ρb. The state of atom A after the collision is
ρe

ab = TrB{Peρa ⊗ ρbPe},
ρe

ab = 1
4ρa + sa · ρasa + (ρasa + saρa) · 〈sb〉
− 2i 〈sb〉 · (sa × ρasa). (1)

For treating a single-species vapor, one substitutes b → a and
arrives at the master equation describing both Hamiltonian
evolution and SE collisions

dρa/dt = −i[Ha, ρa] − (
ρa − ρe

aa

)
/TSE, (2)

where Ha = ωsaz + Asa · Ia is the alkali-metal ground-state
Hamiltonian in the presence of a z-axis magnetic field ω and A
is the hyperfine coupling with the nuclear spin Ia. The second
term in Eq. (2) is responsible for transverse spin relaxation
[30]. The above are well-known results, comprehensively
presented in Ref. [24].

1We use 1 to denote the unit matrix of dimension that follows
from the context, e.g., for two-body operators like Pe the unit
matrix refers to the combined two-atom Hilbert space of dimension
2(2IA + 1)2(2IB + 1).

2The time dependence of V1 is implicit in its dependence on the
internuclear distance, which changes with time along the collision
trajectory.

3In the quantum information literature Pe and U are more widely
known as the SWAP and partial-SWAP operators, respectively (see,
e.g., [28]).

FIG. 1. (a) Quantum measurement picture of a binary spin-
exchange collision. (b) Single-atom trajectory expectation value of
〈Fx〉. Red stars depict the random occurrences of SE collisions. The
chosen parameters were I = 3/2 and in units of 1/TSE, ω = 5 and
A = 100, while time from t = 0 to t = 20 was split into 6M steps.
The initial state was the |2 − 1〉 eigenstate of Fx . The blue dotted line
is just the Hamiltonian evolution. (c) Average (black solid line) of
4000 trajectories like in (b), compared with the predictions of Eq. (2)
(orange dashed line). The inset is similar but for the observable
〈I · s〉.

III. SPIN-EXCHANGE COLLISIONS:
QUANTUM-TRAJECTORY DESCRIPTION

We will now develop the quantum-trajectory approach,
pictured in Fig. 1(a), that is consistent with the above en-
semble description. We start with two, initially uncorrelated,
atoms 1 and 2 in the pure states |ψ1〉 and |ψ2〉. The combined
two-atom precollision and postcollision states are |ψ1〉 ⊗ |ψ2〉
and Pe |ψ1〉 ⊗ |ψ2〉, respectively. We now consider atom 1
as the system and atom 2 as the probe, from which we can
extract information about the system. To do so, we perform a
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projective measurement on the probe. For this we here use
the |FM〉 basis (zero-field eigenstates of I · s and Fz), but
any other complete basis would do equally well. Atom 2 is
projected in some state |FM〉 with probability, pFM , given
by the norm of the state �FMPe |ψ1〉 ⊗ |ψ2〉, where �FM =
1 ⊗ |FM〉 〈FM|. Defining the Kraus operator corresponding
to the particular measurement outcome on atom 2 as KFM =
〈FM|Pe |ψ2〉, we find that pFM = 〈ψ1|K†

FMKFM |ψ1〉. Con-
comitantly, atom 1 is projected to

∣∣ψe
1

〉
FM = KFM |ψ1〉√

pFM
. (3)

The Kraus operators satisfy the completeness relation∑
FM K†

FMKFM = 1, which readily follows from the com-
pleteness of the |FM〉 basis states and the property P2

e = 1.4

Hence it is also
∑

FM pFM = 1, as it should be. Finally, the
state |ψe

1〉FM is properly normalized.
For the numerical production of quantum trajectories, we

consider N atoms, each in any desired pure initial state. We
split time into intervals dt ,5 and in every dt we evolve each
atom unitarily with the Hamiltonian. Moreover, in each dt
there is a probability dt/TSE that an atom suffers an SE
collision. A random number drawn for each atom determines
whether this probability is realized. For those atoms (system
atom 1) undergoing an SE collision during dt , the collision
partner (probe atom 2) is randomly chosen from the same
list of N atoms. Finally, given pFM , we let another random
number determine what the projective measurement outcome
|FM〉 of atom 2 is. Then atom 1 is projected to |ψe

1〉FM given
by Eq. (3).

Crucially, although the particular projection of the probe
atom to a state |FM〉 determines the projection of the system
atom to |ψe

1〉FM , after the collision we leave atom 2 in its
initial precollision state. This has imprinted a Markovian
interpretation, i.e., all probe atoms instantly lose memory of
the collisions taking place during dt and reconstitute the en-
semble precollision state. We here do not investigate whether
the above picture is physically precise, but only care to lay out
the single-atom physics behind the master equation (2), which
has been impressively successful in accounting for a broad set
of experimental data.

Having access to N quantum trajectories, we can evaluate
the time evolution of any observable Q either for the par-
ticular jth trajectory, as 〈Q〉( j)

t = 〈ψ j (t )|Q|ψ j (t )〉, or for the
trajectory average used to compare with the master equation,
as 〈Q〉t = 1

N

∑N
j=1 〈Q〉( j)

t . In Fig. 1(b) we choose for Q the
transverse spin Fx and show an example of a single trajectory
depicting the discontinuities due to SE collisions. In Fig. 1(c)
we show how the average of many such trajectories accounts

4Here the unit operator refers to the single-atom Hilbert space,
because KFM are single-atom operators.

5The value of dt is chosen so that oscillating observables are
numerically well represented. Since realistic values of ω and A in
the Hamiltonian H would require such a small value of dt that
the simulation would not run in realistic times, we here choose
unrealistically small hyperfine couplings, which in any case do not
affect the physical considerations herein.

FIG. 2. (a) Spin noise produced by randomly choosing one of the
eigenstates of Fx as the initial state for each of 400 trajectories. Here
I = 3/2, ω = 32, and A = 100. (b) Spin noise spectrum resulting
from the average of 50 FFT power spectra derived from 50 time
traces like (a). The inset shows the linear dependence of the total spin
noise power of a single FFT power spectrum as a function of atom
number. Error bars were estimated from two different FFT power
spectra.

for spin relaxation at the ensemble level and compare the
trajectory average with Eq. (2), both for Fx and for a second
observable I · s. The perfect agreement demonstrates the con-
sistency of our quantum-trajectory approach.

We next show how the trajectory picture produces spin
noise. We choose for each of the N atoms a random initial
state among all eigenstates of Fx. In Fig. 2(a) we plot the
resulting fluctuations of 〈Fx〉 and in Fig. 2(b) a fast Fourier
transform (FFT) spectrum that is typically observed in spin-
noise spectroscopy. We note that the spin noise in Fig. 2(a) is
not due to an imbalance of the initial states in a finite number
of N trajectories. Similar spin-noise traces can be produced
even by exactly balancing the initial states so that at t = 0 it
is 〈Fx〉 = 0 and even by using as initial states eigenstates of
Fz. Hence spin noise produced by SE collisions is a genuine
quantum effect originating from the quantum randomness of
the postcollision states.

IV. SPIN-EXCHANGE COLLISIONS IN
DUAL-SPECIES VAPORS: ENSEMBLE

VERSUS QUANTUM-TRAJECTORY APPROACH

We now move to the case of a dual-species vapor of
atoms A and B with relative abundances ηa and ηb (ηa +
ηb = 1). This is treated similarly, using N atoms with
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ground-state Hamiltonian Ha and another N atoms with
ground-state Hamiltonian Hb. Now we need to introduce four
kinds of collisions, i.e., A-A, A-B, B-A, and B-B collisions,
with the respective relaxations rates γαβ and SE collision
probabilities dPαβ = γαβdt . The rates γαβ are proportional to
the mean relative α-β velocity and to the abundance ηβ , i.e.,
γαβ ∝ vαβηβ , since the SE relaxation rate of the first collision
partner is proportional to the atom number density of the
second collision partner. Given dPαβ , we let random numbers
determine whether each of the 2N atoms will perform a self-
and/or a cross-exchange collision and we again randomly
choose the collision partner.

Extending Eq. (2) to a dual-species vapor, we arrive at the
two coupled master equations (derived in Ref. [24])

dρa

dt
= −i[Ha, ρa] − γaa

(
ρa − ρe

aa

) − γab
(
ρa − ρe

ab

)
, (4)

dρb

dt
= −i[Hb, ρb] − γba

(
ρb − ρe

ba

) − γbb
(
ρb − ρe

bb

)
, (5)

where ρe
ba and ρe

bb follow from ρe
ab in Eq. (1) by exchanging

a ↔ b and by substituting a → b, respectively. We provide
two examples of the consistency between Eqs. (4) and (5)
and the trajectory average. In Fig. 3(a) we demonstrate the
transfer of spin polarization from type-B atoms to type-A
atoms. This is described by the simple equation d 〈sz〉a /dt =
(〈sz〉b − 〈sz〉a)/TSE [31] and can be experimentally realized by
optically pumping with circularly polarized light atoms B and
measuring the spin polarization building up in atoms A. To
translate these dynamics into the trajectory picture we use a
+1/2 eigenstate of sz as the initial state of atoms B and an
equal mixture of eigenstates of sz for atoms A. Atoms B are
always kept in their initial state, and we consider only A-B
collisions. Next we consider coherent dynamics, by setting
the initial spin polarization of atoms B transversely to the
magnetic field and by again having atoms A unpolarized. We
now observe simultaneously (i) the precession, (ii) the cross
transfer, and (iii) the decay of the transverse polarizations,
as shown in the inset of Fig. 3(a). Perfect agreement is again
observed for both cases.

V. SPIN-NOISE CORRELATIONS IN
DUAL-SPECIES VAPORS

Having established the consistency of our trajectory ap-
proach with the coupled dynamics of Eqs. (4) and (5), we now
move to analyze spin noise correlations that spontaneously
build up in coupled vapors [26,27]. Like in Fig. 2(a), we gen-
erate spin-noise time traces 〈sx〉( j)

a and 〈sx〉( j)
b in a dual-species

vapor and do so for various magnetic fields ω. The index
j is in the range j = 1, . . . , jmax, where jmaxdt is the total
time interval considered. In Fig. 3(b) we show the correlation
coefficient ψω

ab for each magnetic field value ω, where

ψω
ab =

∑
j

(〈sx〉( j)
a − 〈sx〉a

)(〈sx〉( j)
b − 〈sx〉b

)
√∑

j

(〈sx〉( j)
a − 〈sx〉a

)2 ∑
j

(〈sx〉( j)
b − 〈sx〉b

)2
. (6)

At low ω we observe positive correlations, which then tend
to zero as ω increases. This effect was measured in Ref. [26]
and was theoretically derived from the coupled Bloch equa-
tions augmented with noise generating terms. Here the

FIG. 3. (a) Spin transfer from 1000 atoms B (I = 5/2), always
kept in a +1/2 eigenstate of sz, to 1000 atoms A (I = 3/2), initially
unpolarized. The trajectory average (black solid line) is compared
with Eq. (4), keeping only the cross-exchange term (dashed orange
line). The inset shows a similar comparison with the B atoms initially
in the |33〉 eigenstate of Fx . For both vapors we took A = 50 and ω =
5. The trace for 〈sx〉a is shifted downward for clarity. (b) Spin-noise
correlation coefficient ψω

ab for 400 atoms of type A and 400 atoms of
type B. Time from t = 0 to t = 20 was split into 2M steps. Initially,
each atom is in a random eigenstate of Fx . Every point is the mean of
ten runs, and the error bar is the standard error of the mean. Shown
are the trajectory average and the stochastic coupled master equation
prediction, with and without cross exchange. The solid line is the
prediction of the theory developed in Ref. [26]. (c) Distribution of
χab, χa, and χb for 100 spin noise runs with randomized 5 � ω � 50
and 0.1 � γαβ � 1.5.

positive correlation effect is demonstrated with a first-
principles quantum-trajectory analysis without any assump-
tion. The coupled Bloch equations prediction is also shown in
Fig. 3(b) for completeness.
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Importantly, we here move beyond the Bloch equations and
further support the positive correlation effect using Eqs. (4)
and (5). To do so, these equations need to be augmented with
noise terms, which are operators acting in the relevant Hilbert
space, whereas in the Bloch equations [26] the noise terms
were just c-numbers. The first-principles derivation of these
noise operators is not addressed here. Here we make an ad
hoc but physically realistic assumption about their form and
show that the stochastic master equation prediction for ψω

ab
agrees with the trajectory average.

Explicitly, since spin noise produces spin polarization of
order 1/

√
N 	 1, we assume that the atom’s density matrix

describing spin noise produced by SE collisions follows a
spin-temperature distribution [5] with a fluctuating albeit high
temperature, i.e., ρ = e−λFx /Tr{e−λFx }, with λ 	 1. Expand-
ing ρ around λ = 0, we find for the differential change
δρ ∝ Fx. Hence we set for the stochastic terms added to

(4) and (5) δtρa =
√

γa

Na
Fxdξ a

t and δtρb =
√

γb

Nb
Fxdξ b

t ,6 respec-

tively, where γa = γaa + γab and γb = γba + γbb,7 while dξ a
t

and dξ b
t are real and independent Wiener processes with

zero mean and variance dt , i.e., 〈〈dξ a
t 〉〉 = 〈〈dξ b

t 〉〉 = 0 and
〈〈dξα

t dξ
β

t ′ 〉〉 = dtδαβδ(t − t ′), with α, β = a, b. The prediction
of the stochastic master equations is shown in Fig. 3(b) to
reproduce the trajectory average.

As a systematic check, we turn off the cross-exchange pro-
cess in the generation of trajectories, i.e., we do not perform
A-B and B-A collisions. Similarly, we turn off the cross-
exchange coupling terms in the stochastic coupled master
equations. As shown in Fig. 3(b), ψω

ab is consistent with zero
for both cases.

6We note that the operator Fx is a different matrix in the two
noise operators, since they refer to different atom species, i.e., with
different nuclear spin, and hence different Hilbert spaces.

7The particular numerical value in front of the operator Fx in the
noise terms is inconsequential for this work, since it drops out of the
A-B correlation coefficient.

Finally, the fact that the noise terms dξ a
t and dξ b

t should be
independent can be further supported by the quantum trajecto-
ries, from which we calculate χaa, χbb, and χab, where χαβ =∑

j (〈sx〉( j+1)
α − 〈sx〉( j)

α )(〈sx〉( j+1)
β − 〈sx〉( j)

β ), with α, β = a, b.
We do this for 100 spin noise runs, with randomized rates
γαβ and magnetic field ω. In Fig. 3(c) it can be seen that
χab is about three orders of magnitude less than χa and
χb. Yet, a standard result [32] on the quadratic variation of
an Ornstein-Uhlenbeck diffusion process is that (as dt →
0) χαβ ∝ 〈〈dξα

t dξ
β
t 〉〉. Thus, spin-noise correlations in dual-

species vapors are consistent with independent noise terms
driving the master equations (4) and (5), the correlations being
produced by the cross-couplings terms in (4) and (5) and not
by any conspicuous choice of the noise terms.

VI. CONCLUSION

We have developed a single-atom quantum-trajectory pic-
ture of spin-exchange collisions consistent with the density
matrix ensemble description used so far. This picture is ideally
suited to understand quantum fluctuations of all sorts of
spin observables, the fluctuations being driven by the inces-
sant atomic collisions and the resulting binary spin-exchange
interaction. In our application, we demonstrated from first
principles that spin-exchange collisions spontaneously pro-
duce positive spin-noise correlations in vapors containing two
atomic species.
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