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Spin-exchange collisions in hot vapors creating and sustaining bipartite entanglement
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Spin-exchange collisions in alkali or alkali-noble gas vapors are at the basis of quantum sensing, nucleon
structure studies, tests of fundamental symmetries, and medical imaging. We here show that spin-exchange
collisions in hot alkali vapors naturally produce strong bipartite entanglement, which we explicitly quantify
using the tools of quantum information science. This entanglement is shown to have a lifetime at least as long
as the spin-exchange relaxation time, and to directly affect measurable spin noise observables. This is a formal
theoretical demonstration that a hot and dense atomic vapor dominated by random spin-exchange collisions can
support long-lived bipartite and possibly higher-order entanglement.
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Atomic spin-exchange collisions are at the basis of
far-ranging explorations, from nuclear physics [1] and astro-
physics [2,3] to quantum sensing [4] and medical imaging
[5,6]. Spin-exchange collisions in hot alkali vapors underlie
the dynamics of optical pumping and spin relaxation, both be-
ing central to producing and probing nonequilibrium magnetic
substate populations by light [7–9]. More recently, the intri-
cate properties of spin-exchange collisions [10,11] spurred the
development of ultrasensitive atomic magnetometers [12–14],
advancing precision tests of fundamental physics [15–17] and
biomagnetic imaging [18–22]. Since relaxation is intimately
connected to fluctuations, spin-exchange collisions also gen-
erate spin noise, spontaneous fluctuations of the collective
spin addressed by spin noise spectroscopy [23–30].

The existing theoretical treatment [8,11,31] of alkali-metal
atom spin-exchange collisions treats the two atoms emerging
from a binary collision as uncorrelated, and thus accounts
for single-atom observables in an atomic vapor understood
as consisting of uncorrelated atoms. This approach has been
quite successful, because so far experiments probed mostly
single-atom observables. However, recent years witnessed the
exploration of collective quantum states in such vapors. In
particular, measurement-induced multiatom entanglement in
hot alkali vapors was recently observed [32]. Moreover, quan-
tum correlations in alkali or alkali-nobel gas vapors were
theoretically discussed in [33–35].

Here we address the quantum foundations of alkali-
alkali spin-exchange collisions and show that they produce
strong bipartite (atom-atom) entanglement. We formally
quantify this entanglement with the tools of quantum infor-
mation science, and show it persists for at least another ten
spin-exchange collision times. Hence we provide a formal
demonstration, using the full alkali-metal atom density matrix
and the full spin-exchange interaction, that random spin-
exchange collisions in a hot and dense vapor fundamentally

allow for long-lived two-body entanglement. It is conceivable
that these results hold true also for multibody entanglement
produced by a sequence of binary spin-exchange collisions.
Here we terminate this sequence at the third collision partner,
limiting this discussion to bipartite entanglement. We finally
show how this entanglement can be revealed through binary
spin correlations affecting measurable spin noise variances.

Spin-exchange (SE) collisions between two atoms, A and
B, result from the different potential curves [36] of the singlet
and triplet total spin of the colliding partners. If sA and sB are
the electron spins of the colliding atoms, the singlet and triplet
projectors are PS = 1

4 − sA · sB and PT = 3
4 + sA · sB, respec-

tively [37]. Introducing the exchange operator Pe = PT − PS ,
the SE interaction potential is written as [11] Vse = V0 + V1Pe.
Only the latter term drives the spin state evolution, expressed
by the unitary operator U AB

φ = e−i
∫

dt V1Pe , where φ = ∫
dt V1

is the SE phase [38]. Noting that P2
e = 1, we find U AB

φ =
cos φ1 − i sin φPe. Now let two uncorrelated atoms A and B
enter a collision in the combined state ρ0 = ρa ⊗ ρb. The post-
collision density matrix is ρ = U AB

φ ρ0(U AB
φ )† = cos2 φρ0 +

sin2 φPeρ0Pe − (i/2) sin 2φ[Pe, ρ0].
The next step in the standard derivation of SE relax-

ation [8,11,31] is to trace out atom B (A) in order to find
the postcollision state of atom A (B), writing the combined
postcollision state as ρ ′

a ⊗ ρ ′
b, where ρ ′

a = TrB{ρ} and ρ ′
b =

TrA{ρ}. With the postcollision state written as a tensor product
of uncorrelated states, this approach is well suited for treating
single-atom observables in a vapor described as consisting of
uncorrelated atoms. Hence there is no need to keep track of the
tensor-product notation and one is left with the single-atom
density matrices (for single-species vapors one sets a = b and
omits the atom indices altogether).

We will now extend this treatment and unravel the bipartite
entanglement in the postcollision two-atom state ρ resulting
from the action of U AB

φ on the initial state ρ0. To facilitate this
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analysis, we write ρ as [39]

ρ =
(

cos2 φ + 1

4
sin2 φ

)
ρa ⊗ ρb + 1

4
sin2 φ

∑
j

σ jρaσ j ⊗ σ jρbσ j

+ sin2 φ

4

[ ∑
i �= j

σiρaσ j ⊗ σiρbσ j +
∑

j

(
ρaσ j ⊗ ρbσ j + σ jρa ⊗ σ jρb

)] − i sin 2φ

4

∑
j

(
σ jρa ⊗ σ jρb − ρaσ j ⊗ ρbσ j

)
. (1)

We will first find a formal upper bound to the entanglement
of ρ, which bound is independent of the SE phase φ and
the particular colliding states ρa and ρb. This will serve both
as an indicative measure of entanglement and as a consis-
tency check for the numerical calculations following suit and
demonstrating that several colliding states of practical interest
lead to significant entanglement, in cases saturating the upper
bound. Incidentally, a general lower bound other than the
trivial one (zero) cannot be given, since the entanglement of ρ

depends on φ, and for φ = 0 or φ = π it is ρ = ρ0, in which
case ρ has zero entanglement.

We first note that the first line in Eq. (1) is a separable den-
sity matrix, i.e., it is written as

∑
i piρ

(i)
a ⊗ ρ

(i)
b , with

∑
i pi =

1. The form ρ (i)
a ⊗ ρ

(i)
b is obvious in the first term of the first

line in Eq. (1). Regarding the second term, each term in the
sum over j multiplied by 1

4 sin2 φ is a physical tensor-product
density matrix, because it is the result of acting on ρa ⊗ ρb

with a completely positive map consisting of σ j , since σ j is
Hermitian and σ

†
j σ j = σ 2

j = 1. For example, the term j = x
results from acting on ρa ⊗ ρb with Mx = σx ⊗ σx, i.e., from
the operation Mxρa ⊗ ρbM†

x . Since all such Mj operators are
local, the resulting density matrices in each of the three such
terms ( j = x, y, z) are again of the separable form. Now, the
second line in Eq. (1) is Hermitian and traceless. If this second
line was absent, the density matrix ρ would be separable. But
as is, it generally exhibits bipartite entanglement.

Negativity is an entanglement measure [40] for bipartite
systems, defined by N (ρ) = (‖ρTB‖ − 1)/2, where ρTB is the
partial transpose (PT) of ρ. The partial transpose of a bi-
partite density matrix ρ = ∑

i jkl ρi j,kl |i〉 〈 j| ⊗ |k〉 〈l| is ρTB =∑
i jkl ρi j,kl |i〉 〈 j| ⊗ |l〉 〈k|, i.e., the operator in the right posi-

tion of the tensor product (party B) is transposed. The trace
norm ‖ρTB‖ ≡ Tr{

√
(ρTB )†ρTB} is a special case (p = 1) of

the so-called Shatten-p norm. Since the PT of ρ in Eq. (1)
is Hermitian, ‖ρTB‖ equals the sum of the absolute values of
the eigenvalues of ρTB .

To analytically calculate ‖ρTB‖ in all generality presents
an insurmountable difficulty. However, we can calculate an
upper bound to ‖ρTB‖, using the triangle inequality ‖A1 +
A2 + . . . An‖ � ‖A1‖ + ‖A2‖ + . . . ‖An‖, and the fact that for
any constant c it is ‖cA‖ = |c|‖A‖. First note that σ T

x = σx,
σ T

y = −σy, and σ T
z = σz. It follows that the effect of the PT

operation on the first line of Eq. (1) is just to change ρb into ρ∗
b .

However, ρ∗
b is also a physical density matrix having opposite

phases compared to ρb. Hence after the PT, the first line is
still a physical density matrix of unit trace, and hence its trace
norm is 1.

For the terms in the second line of Eq. (1) we will use
the identity ‖A1 ⊗ · · · ⊗ An‖ = ‖A1‖ . . . ‖An‖, and the fact
that the trace norm is unitarily invariant, i.e., ‖A‖ = ‖UAV ‖

for unitary U and V [41]. We appropriately choose U and
V to be some Pauli operator σ j , such that we rid all terms
in the PT version of the second line of Eq. (1) from the
σ j operators, also using the fact that σ 2

j = 1. For example,
take the term A = σxρaσy ⊗ σxρbσy. Its partial transpose is
ATB = −σxρaσy ⊗ σyρ

∗
bσx. The trace norm of ATB is ‖ATB‖ =

‖σxρaσy‖ ‖σyρ
∗
bσx‖. For the first term in this product we take

U = σx and V = σy, while for the second we choose U = σy

and V = σx. Hence ‖ATB‖ = ‖ρa‖ ‖ρ∗
b‖ = 1. We thus reduce

all terms to expressions having unit trace norm. There are 12
such terms in the expression multiplied by (1/4) sin2 φ, and
6 such terms in the one multiplied by −(i/4) sin 2φ. Thus the
negativity of ρ given by Eq. (1) is bounded by

N (ρ) � 3

2
sin2 φ + 3

4
| sin 2φ|. (2)

We will next show numerically that states of experimental
relevance lead to significant negativities, in cases saturating
the bound of Eq. (2). We have performed an exact simula-
tion for a 87Rb vapor (nuclear spin I = 3/2, 8-dimensional
Hilbert space, 64-dimensional tensor product space). We use
random precollision states ρa ⊗ ρb and a random SE phase
φ. Writing down the most general random, Hermitian and
positive-semidefinite eight-dimensional matrix is not trivial
[42]. Therefore we use random coherent superpositions of
the |FM〉 basis states to create the most general random pure
states |ψa〉 and |ψb〉 [43].

The result is shown in Fig. 1(a). The largest negativity is
produced for collisions of |20〉 with |20〉 and |10〉 with |10〉,
both of which saturate the bound for φ = π/2. For those
cases, which are relevant to frequency standards [44], we can
find the exact result Nhf = 3

4 (sin2 φ + | sin φ|
√

1 + 3 cos2 φ)
[dashed upper blue line in Fig. 1(a)].

In contrast, collisions between the stretched states |22〉
with |22〉, and |2 − 2〉 with |2 − 2〉 produce zero negativity,
Nstretched = 0. This is because stretched states are invariant un-
der SE, so an initially uncorrelated product state of stretched
states will remain invariant and uncorrelated [such zeros are
not apparent in Fig. 1(a) because it is improbable, within the
5000 points, that both colliding random pure states happen to
be the same stretched state].

Relevant to a highly spin-polarized vapor are mostly col-
lisions between |22〉 and |21〉 states. In fact, such collisions
produce the ubiquitous Zeeman frequency shift. Indeed, a
perfectly spin-polarized vapor in the stretched state |22〉 is
invariant under SE, hence there is neither any entanglement
nor any Zeeman shift produced. Considering an imperfectly
polarized vapor with a population of |22〉 significantly larger
than the population of |21〉, it is collisions between |22〉 and
|21〉 states that dominate the shift, since collisions of |21〉 with
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FIG. 1. (a) Negativity of ρ in Eq. (1). Red solid line is the upper
bound of Eq. (2). The 5000 orange dots correspond to random pure
initial states |ψa〉 and |ψb〉 for 87Rb and random SE phase φ. Upper
(lower) dashed blue lines are the analytic negativities Nhf (NZ) for
collisions of |20〉 with |20〉 (|22〉 with |21〉). Dotted curve at zero
corresponds to collisions between stretched states, |22〉 with |22〉
and |2 − 2〉 with |2 − 2〉. (b) Ratio of N (ρ ′) with N (ρ ) for the
same states corresponding to the orange dots in (a), where ρ ′ results
from a B-C collision with random phase χ and random C-atom state
|ψc〉, after tracing out atom C. Solid line is cos2 χ . (c) Evolution
of A-B negativity (blue dots), starting out from a highly entangled
A-B state with negativity 1.5, then A or B colliding with C atoms
randomly chosen among |2m〉 with random phase χ . Red solid line is

an exponential decay with constant n0 = 2.3, close to 1/sin2 φ ≈ 2.0
resulting from the Cauchy distribution of χ having center 0.0 and
scale 10.0.

|21〉 are less frequent. The negativity for a collision of |22〉
with |21〉 [lower dashed blue line in Fig. 1(a)] can also be
found analytically; it is NZ = 1

4 | sin φ|
√

3 + cos2 φ.
Based on Fig. 1(a) and the exact results Nhf and NZ, it ap-

pears that the entanglement produced by strong SE collisions,
the phase of which is such [11] that the collisional average

sin2 φ ≈ 1, is rather significant. We next turn to explicitly
quantify the lifetime of this entanglement. To this end, we
will bring into the picture a third atom C, and consider the
uncorrelated initial state ρa ⊗ ρb ⊗ ρc. We let atoms A and B
collide with phase φ as before, and then have atom B collide
with atom C with phase χ . We then trace out atom C, and find
the negativity of the resulting A-B state

ρ ′ = TrC{U BC
χ U AB

φ ρa ⊗ ρb ⊗ ρc(U AB
φ )†(U BC

χ )†}. (3)

From the resulting expression we can ignore terms propor-
tional to either sin 2φ or sin 2χ , the collisional averages of
which express the collisional frequency shift and thus are very
small [11], and thus we get

ρ ′ ≈ cos2 χρ

+ cos2 φ sin2 χρa ⊗ TrC{PBC
e ρb ⊗ ρcPBC

e }
+ sin2 φ sin2 χTrC{PBC

e PAB
e ρa ⊗ ρb ⊗ ρcPAB

e PBCC
e }.

(4)

In Fig. 1(b) we plot the exact ratio N (ρ ′)/N (ρ) as a function
of χ . It is seen that N (ρ ′) ≈ cos2 χN (ρ), i.e., the negativity
of ρ ′ is approximately given by considering just the first term
in Eq. (4). Since a binary SE collision happens every time

interval T , related to Tse by [8] sin2 χ/T = 1/Tse, and since
just one B-C collision reduces the A-B negativity by cos2 χ ,
we can write

dN (ρ)

dt
≈ N (ρ ′) − N (ρ)

T
≈ −N (ρ)

Tse
. (5)

Thus the negativity N (ρ) is predicted to decay exponentially
with time constant Tse. Indeed, this is explicitly shown in the
example of Fig. 1(c). To produce this plot we let both atoms
A and B initially collide in the state |20〉 with phase π/2,
thus producing a highly entangled state with negativity 3/2.
We then let either A or B collide with an atom C randomly
chosen among the set of states |2m〉, and with phase sampled
from a Cauchy distribution having zero mean and scale 10.0,
producing an average sin2 χ ≈ 0.5. We consider in total 15
collisions labeled by n = 0, 1, . . . , 14 (n = 0 is the initial A-B
collision and the rest are A-C or B-C collisions). After each
A-C or B-C collision atom C is traced out. We repeat this
process 100 times and plot the resulting average N (ρ ′)n as a
function of SE collision number n. We find a decay “time” (in

terms of the number of SE collisions) very close to 1/sin2 χ

as determined from the Cauchy distribution of the χ values.
In particular, it is observed that significant negativity (�0.1)
survives for about 7Tse.

It should be stressed that in all of the above considerations
we have not specified the precise physical process realizing
the tracing out of atom C. But our starting point was the
existing single-atom derivation tracing out atom B (and A)
when obtaining the single-atom density matrix under the as-
sumption of instant A-B decorrelation. We found the natural
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FIG. 2. Binary spin correlations Cab
fq fq

for (a) q = x, y, and
(b) q = z. The color-shaded negativity is that of the two-atom state
ρ of Eq. (1) produced by an SE collision with phase φ between
|2m〉 and |2m′〉, with m, m′ = −2, −1, . . . , 2. As expected, strong
binary spin correlations are seen to be connected with large absolute
negativities. Correlation is positive and up to 1.0 for q = x, y, and
negative down to −0.5 for q = z.

timescale of this decorrelation by going into a deeper layer
of the many-body spin dynamics and invoking the interaction
with a third atom C. In fact, we forcefully and instantly decor-
relate the dynamics at the third-collision partner (atom C).
However, it is expected that atom C will gradually (through
further collisions) extract information from the A-B state
[45–47], rendering Tse a lower bound for the 1/e entanglement
lifetime.

Closing, we outline how the bipartite entanglement con-
sidered herein can manifest itself experimentally. Consider a
spectroscopic measurement of the collective spin of N atoms,
Fq = ∑N

j=1 f j
q , where f j

q is the q component of the jth atom
total spin, with q = x, y, z. The variance of Fq is in princi-
ple readily measurable, and is given by (�Fq)2 = 〈F2

q 〉 −
〈Fq〉2 = ∑N

j=1(� f j
q )2 + ∑

i �= j Ci j
fq fq

, where Ci j
fq fq

= 〈 f i
q f j

q 〉 −
〈 f i

q〉〈 f j
q 〉. Clearly, for uncorrelated atoms it is Ci j

fq fq
= 0, and

the total variance equals the sum of the individual atom vari-

ances. Now, it is seen that a nonzero Cab
fq fq

is connected with
the entanglement produced by an SE collision between atoms
A and B. Indeed, using the postcollision state ρ of Eq. (1) we
can find both terms entering Cab

fq fq
. It is 〈 f a

q f b
q 〉 = Tr{ρ fq ⊗

fq}, 〈 f a
q 〉 = Tr{ρa fq}, and 〈 f b

q 〉 = Tr{ρb fq}, with ρa = TrB{ρ}
and ρb = TrA{ρ}. In Fig. 2 we plot examples of Cab

fq fq
for

collisions within the F = 2 manifold. It is evident that a large
negativity N (ρ) is connected with a large |Cab

fq fq
|.

To show the effect of Cab
fq fq

on spin variances we consider
the following three cases of practical interest (in all examples
we take φ = π/2): (i) A state having Zeeman coherence, e.g.,
|ψ〉 = (|22〉 + |21〉)/

√
2. After SE, the resulting variance of

Fy for this state is 3.5, of which 21% comes from positive
binary correlations. (ii) A state exhibiting alignment, e.g.,
|ψ〉 = (|22〉 + |2 − 2〉)/

√
2. Here the resulting variance of Fz

is 8, of which 62.5% is the contribution of positive correla-
tions. (iii) The state |20〉 of interest to clock transitions. Here
the resulting variance of Fz is zero. This is due to negative cor-
relations [see Fig. 2(b)] completely canceling the variance’s
uncorrelated contribution. For yet another example, a mea-
surement of the projector to the lower F = 1 manifold results
in a variance of 0.75, of which 37.6% comes from correla-
tions. Many other scenarios can similarly lead to significant
effects on spin variances due to correlations established by
the entanglement spontaneously produced by SE collisions.
Such correlations will have to be fully understood in order
to benchmark any metrological improvement of entangled
states produced by external means (e.g., interaction with light,
as in [32]) against the baseline variances determined by the
underlying collisional physics.

Concluding, we have explored the atom-atom entangle-
ment generated by spin-exchange collisions in hot alkali
vapors. Our results should be equally applicable to alkali-
noble gas collisions, and have the potential to further advance
the understanding and design of nontrivial collective quantum
states for use in quantum technology.
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