Spin-exchange collisions in hot vapors creating and sustaining bipartite entanglement

K. Mouloudakis and I. K. Kominis
Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, 70013 Heraklion, Greece

(Received 20 April 2020; revised 14 December 2020; accepted 17 December 2020; published 6 January 2021)

Spin-exchange collisions in alkali or alkali-noble gas vapors are at the basis of quantum sensing, nucleon structure studies, tests of fundamental symmetries, and medical imaging. We here show that spin-exchange collisions in hot alkali vapors naturally produce strong bipartite entanglement, which we explicitly quantify using the tools of quantum information science. This entanglement is shown to have a lifetime at least as long as the spin-exchange relaxation time, and to directly affect measurable spin noise observables. This is a formal theoretical demonstration that a hot and dense atomic vapor dominated by random spin-exchange collisions can support long-lived bipartite and possibly higher-order entanglement.

DOI: 10.1103/PhysRevA.103.L010401

Atomic spin-exchange collisions are at the basis of far-ranging explorations, from nuclear physics [1] and astrophysics [2,3] to quantum sensing [4] and medical imaging [5,6]. Spin-exchange collisions in hot alkali vapors underlie the dynamics of optical pumping and spin relaxation, both being central to producing and probing nonequilibrium magnetic substate populations by light [7–9]. More recently, the intricate properties of spin-exchange collisions [10,11] spurred the development of ultrasensitive atomic magnetometers [12–14], advancing precision tests of fundamental physics [15–17] and biomagnetic imaging [18–22]. Since relaxation is intimately connected to fluctuations, spin-exchange collisions also generate spin noise, spontaneous fluctuations of the collective spin addressed by spin noise spectroscopy [23–30].

The existing theoretical treatment [8,11,31] of alkali-metal atom spin-exchange collisions treats the two atoms emerging from a binary collision as uncorrelated, and thus accounts for single-atom observables in an atomic vapor understood as consisting of uncorrelated atoms. This approach has been quite successful, because so far experiments probed mostly single-atom observables. However, recent years witnessed the exploration of collective quantum states in such vapors. In particular, measurement-induced multiatom entanglement in hot alkali vapors was recently observed [32]. Moreover, quantum correlations in alkali or alkali-noble gas vapors were theoretically discussed in [33–35].

Here we address the quantum foundations of alkali-alkali spin-exchange collisions and show that they produce strong bipartite (atom-atom) entanglement. We formally quantify this entanglement with the tools of quantum information science, and show it persists for at least another ten spin-exchange collision times. Hence we provide a formal demonstration, using the full alkali-metal atom density matrix and the full spin-exchange interaction, that random spin-exchange collisions in a hot and dense vapor fundamentally allow for long-lived two-body entanglement. It is conceivable that these results hold true also for multibody entanglement produced by a sequence of binary spin-exchange collisions. Here we terminate this sequence at the third collision partner, limiting this discussion to bipartite entanglement. We finally show how this entanglement can be revealed through binary spin correlations affecting measurable spin noise variances.

Spin-exchange (SE) collisions between two atoms, A and B, result from the different potential curves [36] of the singlet and triplet total spin of the colliding partners. If s_A and s_B are the electron spins of the colliding atoms, the singlet and triplet projectors are $P_S = \frac{1}{2} - s_A \cdot s_B$ and $P_T = \frac{1}{2} + s_A \cdot s_B$, respectively [37]. Introducing the exchange operator $P_E = P_T - P_S$, the SE interaction potential is written as [11] $V_{SE} = V_0 + V_1 P_E$. Only the latter term drives the spin state evolution, expressed by the unitary operator $U_{A}^{AB} = e^{-i \int dt V_1 P_E}$, where $\phi = \int dt V_1$ is the SE phase [38]. Noting that $P_E^2 = 1$, we find $U_{A}^{AB} = \cos \phi \mathbb{1} - i \sin \phi P_E$. Now let two uncorrelated atoms A and B enter a collision in the combined state $\rho_0 = \rho_A \otimes \rho_B$. The postcollision density matrix is $\rho = U_{A}^{AB} \rho_0 (U_{A}^{AB})^\dagger = \cos^2 \phi \rho_0 + \sin^2 \phi P_E \rho_0 P_E - (i/2) \sin 2\phi [P_E, \rho_0]$.

The next step in the standard derivation of SE relaxation [8,11,31] is to trace out atom B (A) in order to find the postcollision state of atom A (B), writing the combined postcollision state as $\rho'_A \otimes \rho'_B$, where $\rho'_A = \text{Tr}_B(\rho)$ and $\rho'_B = \text{Tr}_A(\rho)$. With the postcollision state written as a tensor product of uncorrelated states, this approach is well suited for treating single-atom observables in a vapor described as consisting of uncorrelated atoms. Hence there is no need to keep track of the tensor-product notation and one is left with the single-atom density matrices (for single-species vapors one sets $a = b$ and omits the atom indices altogether).

We will now extend this treatment and unravel the bipartite entanglement in the postcollision two-atom state ρ resulting from the action of U_{A}^{AB} on the initial state ρ_0. To facilitate this
We will first find a formal upper bound to the entanglement of \(\rho \), which bound is independent of the SE phase \(\phi \) and the particular colliding states \(\rho_a \) and \(\rho_b \). This will serve both as an indicative measure of entanglement and as a consistency check for the numerical calculations following suit and demonstrating that several colliding states of practical interest lead to significant entanglement, in cases saturating the upper bound. Incidentally, a general lower bound other than the trivial one (zero) cannot be given, since the entanglement of \(\rho \) depends on \(\phi \), and for \(\phi = 0 \) or \(\phi = \pi \) it is \(\rho = \rho_0 \), in which case \(\rho \) has zero entanglement.

We first note that the first line in Eq. (1) is a separable density matrix, i.e., it is written as \(\sum p_i \rho_i^{(a)} \otimes \rho_i^{(b)} \), with \(\sum p_i = 1 \). The form \(\rho_0^{(a)} \otimes \rho_0^{(b)} \) is obvious in the first term of the first line in Eq. (1). Regarding the second term, each term in the sum over \(j \) multiplied by \(\frac{1}{2} \sin^2 \phi \) is a physical tensor-product density matrix, because it is the result of acting on \(\rho_a \otimes \rho_b \) with a completely positive map consisting of \(\sigma_j \), since \(\sigma_j \) is Hermitian and \(\sigma_j \sigma_j = \sigma_j^2 = 1 \). For example, the term \(j = x \) results from acting on \(\rho_a \otimes \rho_b \) with \(M_x = \sigma_x \otimes \sigma_x \), i.e., from the operation \(M_x \rho_a \otimes M_x \rho_b \). Since all such \(M_j \) operators are local, the resulting density matrices in each of the three such terms \((j = x, y, z) \) are again of the separable form. Now, the second line in Eq. (1) is Hermitian and traceless. If this second line was absent, the density matrix \(\rho \) would be separable. But as is, it generally exhibits bipartite entanglement.

Negativity is an entanglement measure [40] for bipartite systems, defined by \(N(\rho) = 1 - \text{Tr}(\rho^{T_A} \rho^{T_B}) / 2 \), where \(\rho^{T_A} \) is the partial transpose (PT) of \(\rho \). The partial transpose of a bipartite density matrix \(\rho = \sum_{ijkl} \rho_{ijkl} \{|i\rangle \otimes |j\rangle \} \) is \(\rho^{T_A} = \sum_{ijkl} \rho_{ijkl} \{|i\rangle \otimes |k\rangle \} \), i.e., the operator in the right position of the tensor product (party B) is transposed. The trace norm \(\| \rho^{T_A} \| = \text{Tr}(\sqrt{(\rho^{T_A})^2}) \) is a special case (\(p = 1 \)) of the so-called Shatten-\(p \)-norm. Since the PT of \(\rho \) in Eq. (1) is Hermitian, \(\| \rho^{T_A} \| \) equals the sum of the absolute values of the eigenvalues of \(\rho^{T_A} \).

To analytically calculate \(\| \rho^{T_A} \| \) in all generality presents an insurmountable difficulty. However, we can calculate an upper bound to \(\| \rho^{T_A} \| \), using the triangle inequality \(\| A_1 + A_2 + \ldots + A_n \| \leq \| A_1 \| + \| A_2 \| + \ldots + \| A_n \| \), and the fact that for any constant \(c \) it is \(\| cA \| = |c| \| A \| \). First note that \(\sigma_j^T = \sigma_j \), \(\sigma_{-j}^T = -\sigma_{-j} \), and \(\sigma_{-j}^T = \sigma_j \). It follows that the effect of the PT operation on the first line of Eq. (1) is just to change \(\rho_j \) into \(\rho_{-j} \). However, \(\rho_j \) is also a physical density matrix having opposite phases compared to \(\rho_{-j} \). Hence after the PT, the first line is still a physical density matrix of unit trace, and hence its trace norm is 1.

For the terms in the second line of Eq. (1) we will use the identity \(\| A_1 \otimes \ldots \otimes A_n \| = \| A_1 \| \ldots \| A_n \| \), and the fact that the trace norm is unitarily invariant, i.e., \(\| A \| = \| UA U^\dagger \| \) for unitary \(U \) and \(V \) [41]. We appropriately choose \(U \) and \(V \) to be some Pauli operator \(\sigma_j \), such that we rid all terms in the PT version of the second line of Eq. (1) from the \(\sigma_j \) operators, also using the fact that \(\sigma_j^2 = 1 \). For example, take the term \(A = \sigma_j \rho_a \sigma_j \otimes \sigma_j \rho_b \sigma_j \). Its partial transpose is \(A^{T_A} = -\sigma_j \rho_a \sigma_j \otimes \sigma_j \rho_b \sigma_j \). The trace norm of \(A^{T_A} \) is \(\| A^{T_A} \| = \| \sigma_j \rho_a \sigma_j \| \| \sigma_j \rho_b \sigma_j \| \). For the first term in this product we take \(U = \sigma_j \), and \(V = \sigma_j \), while for the second we choose \(U = \sigma_j \), and \(V = \sigma_j \). Hence \(\| A^{T_A} \| = \| \rho_a \| \| \rho_b \| = 1 \). We thus reduce all terms to expressions having unit trace norm. There are 12 such terms in the expression multiplied by \((1/4) \sin^2 \phi \), and 6 such terms in the one multiplied by \(-(i/4) \sin 2\phi \). Thus the negativity of \(\rho \) given by Eq. (1) is bounded by

\[
N(\rho) \leq \frac{3}{2} \sin^2 \phi + \frac{3}{4} | \sin 2\phi |.
\]
The negativity for a collision of $|22\rangle$ with $|21\rangle$ [lower dashed blue line in Fig. 1(a)] can also be found analytically; it is $N_2^* = \frac{1}{4}|\sin \phi|\sqrt{3 + \cos^2 \phi}$.

Based on Fig. 1(a) and the exact results N_{se} and N_2, it appears that the entanglement produced by strong SE collisions, the phase of which is such [11] that the collisional average $\sin^2 \phi \approx 1$, is rather significant. We next turn to explicitly quantify the lifetime of this entanglement. To this end, we will bring into the picture a third atom, C, and consider the uncorrelated initial state $\rho_{AC} \otimes \rho_B \otimes \rho_C$. We let atoms A and B collide with phase ϕ as before, and then have atom B collide with atom C with phase χ. We then trace out atom C, and find the negativity of the resulting $A-B$ state

$$
\rho' \approx \cos^2 \chi \rho_{AB}
+ \cos^2 \phi \sin^2 \chi \rho_{AC} \otimes \rho_B \otimes \rho_{AB} \rho_{B} \rho_{C}
+ \sin^2 \phi \sin^2 \chi \rho_{AC} \otimes \rho_B \otimes \rho_{AC} \rho_{B} \rho_{C}.
$$

In Fig. 1(b) we plot the exact ratio $N(\rho')/N(\rho)$ as a function of χ. It is seen that $N(\rho') \approx \cos^2 \chi N(\rho)$, i.e., the negativity of ρ' is approximately given by considering just the first term in Eq. (4). Since a binary SE collision happens every time interval T, related to T_{se} by $T \approx T_{se}$, and since just one $B-C$ collision reduces the $A-B$ negativity by $\cos^2 \chi$, we can write

$$
\frac{dN(\rho)}{dt} \approx \frac{N(\rho') - N(\rho)}{T} \approx \frac{N(\rho)}{T_{se}}.
$$

Thus the negativity $N(\rho)$ is predicted to decay exponentially with time constant T_{se}. Indeed, this is explicitly shown in the example of Fig. 1(c). To produce this plot we let both atoms A and B initially collide in the state $|20\rangle$ with phase $\pi/2$, thus producing a highly entangled state with negativity $3/2$. We then let either A or B collide with an atom C randomly chosen among the set of states $|2m\rangle$, and with phase sampled from a Cauchy distribution having zero mean and scale 10.0, producing an average $\sin^2 \phi \approx 0.5$. We consider in total 15 collisions labeled by $n = 0, 1, \ldots, 14$ ($n = 0$ is the initial $A-B$ collision and the rest are $A-C$ or $B-C$ collisions). After each $A-C$ or $B-C$ collision atom C is traced out. We repeat this process 100 times and plot the resulting average $N(\rho)_n$ as a function of SE collision number n. We find a decay “time” (in terms of the number of SE collisions) very close to $1/\sin^2 \chi$ as determined from the Cauchy distribution of the χ values. In particular, it is observed that significant negativity (≥ 0.1) survives for about T_{se}.

It should be stressed that in all of the above considerations we have not specified the precise physical process realizing the tracing out of atom C. But our starting point was the existing single-atom derivation tracing out atom B (and A) when obtaining the single-atom density matrix under the assumption of instant $A-B$ decorrelation. We found the natural
timescale of this decorrelation by going into a deeper layer of the many-body spin dynamics and invoking the interaction with a third atom. In fact, we forcefully and instantly decorrelate the dynamics at the third-collision partner (atom C). However, it is expected that atom C will gradually (through further collisions) extract information from the A-B state [45–47], rendering T_{ex} a lower bound for the $1/e$ entanglement lifetime.

Closing, we outline how the bipartite entanglement considered herein can manifest itself experimentally. Consider a spectroscopic measurement of the collective spin of N atoms, $F_q = \sum_{j=1}^{N} f_q^j$, where f_q^j is the q component of the jth atom total spin, with $q = x, y, z$. The variance of F_q is in principle readily measurable, and is given by $(\Delta F_q)^2 = F_q^2 - (\langle F_q \rangle)^2 = F_q^2 - \sum_{j=1}^{N} (\langle f_q^j \rangle)^2 - \sum_{q \neq \phi} C_{q,\phi}^{f_q f_\phi}$. Clearly, for uncorrelated atoms it is $C_{q,\phi}^{f_q f_\phi} = 0$, and the total variance equals the sum of the individual atom variances. Now, it is seen that a nonzero $C_{q,\phi}^{f_q f_\phi}$ is connected with the entanglement produced by an SE collision between atoms A and B. Indeed, using the postcollision state ρ of Eq. (1) we can find both terms entering $C_{q,\phi}^{f_q f_\phi}$. It is $\langle f_q^j f_\phi^k \rangle = \text{Tr}(\rho f_q^j \otimes f_\phi^k)$, $\langle f_q^j \rangle = \text{Tr}(\rho f_q^j)$, and $\langle f_\phi^k \rangle = \text{Tr}(\rho f_\phi^k)$, with $\rho_a = \text{Tr}_A[\rho]$ and $\rho_b = \text{Tr}_B[\rho]$. In Fig. 2 we plot examples of $C_{q,\phi}^{f_q f_\phi}$ for collisions within the $F = 2$ manifold. It is evident that a large negativity $N(\rho)$ is connected with a large $|C_{q,\phi}^{f_q f_\phi}|^2$.

To show the effect of $C_{q,\phi}^{f_q f_\phi}$ on spin variances we consider the following three cases of practical interest (in all examples we take $\phi = \pi/2$): (i) A state having Zeeman coherence, e.g., $|\psi\rangle = (|22\rangle + |21\rangle)/\sqrt{2}$. After SE, the resulting variance of F_z for this state is 3.5, of which 21% comes from positive binary correlations. (ii) A state exhibiting alignment, e.g., $|\psi\rangle = (|22\rangle + |2 - 2\rangle)/\sqrt{2}$. Here the resulting variance of F_z is 8, of which 62.5% is the contribution of positive correlations. (iii) The state $|20\rangle$ of interest to clock transitions. Here the resulting variance of F_z is zero. This is due to negative correlations [see Fig. 2(b)] completely canceling the variance’s uncorrelated contribution. For yet another example, a measurement of the projector to the lower $F = 1$ manifold results in a variance of 0.75, of which 37.6% comes from correlations. Many other scenarios can similarly lead to significant effects on spin variances due to correlations established by the entanglement spontaneously produced by SE collisions. Such correlations will have to be fully understood in order to benchmark any metrological improvement of entangled states produced by external means (e.g., interaction with light, as in [32]) against the baseline variances determined by the underlying collisional physics.

Concluding, we have explored the atom-atom entanglement generated by spin-exchange collisions in hot alkali vapors. Our results should be equally applicable to alkali-noble gas collisions, and have the potential to further advance the understanding and design of nontrivial collective quantum states for use in quantum technology.

The authors acknowledge useful comments by the anonymous referees. K.M. acknowledges the cofinancing of this research by Greece and the European Union [European Social Fund (ESF)] through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (Grant No. MIS-5000432), implemented by the State Scholarships Foundation (IKY).

We can also create random mixed states by starting from random pure states and applying a random completely positive map, i.e., choose a set of operators satisfying $\sum_j M_j M_j^\dagger = 1$, and calculate $\sum_j M_j |\psi\rangle \langle M_j|$. For example, we can use the set $M_j = \sigma_j B_j$, with random $\sigma_j \geq 0$, $j = x, y, z$, and $\sum_j \sigma_j^2 = 1$. As expected, we obtain negativities on average smaller than for pure precollision states.