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ABSTRACT

It was recently proposed to use the human visual system’s ability to perform efficient photon counting in order to devise a new biometric
methodology. The relevant biometric “fingerprint” is represented by the optical losses light suffers along several different paths from the
cornea to the retina. The “fingerprint” is accessed by interrogating a subject on perceiving or not weak light flashes, containing few tens of
photons, so that the subject’s visual system works at the threshold of perception, at which regime optical losses play a significant role. Here,
we show that if, instead of weak laser light pulses, we use quantum light sources, in particular, single-photon sources, we obtain a quantum
advantage, which translates into a reduction of the interrogation time required to achieve the desired performance. Besides the particular
application on biometrics, our work further demonstrates that quantum light sources can provide deeper insights when studying human
vision.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080942

I. INTRODUCTION

Secure biometric identification1,2 has some analogies to secure
transmission of information: in both cases, the potential for some
impostor to maliciously intervene in the respective process must be
avoided. Quantum cryptography3,4 has served as a paradigm of the
so-called “quantum advantage,” i.e., the security of cryptographic
key transmission is guaranteed by the laws of quantum physics. In
contrast, classical means of information transmission are vulnerable
to, e.g., eavesdropping.

In a similar fashion, we recently proposed5 a biometric
authentication scheme, which takes advantage of the human visual
system’s ability to perform photon counting. There, the laws of
photon statistics and photodetection at the quantum level of a
small number of photons are central for the workings of the
scheme, providing for an uncompromising security against an
impersonator. The relevant “fingerprint” is a physical property of
the visual system, including the eyeball, retina, and brain. In other
words, the biometric authentication process rests on the conscious

perception of weak-intensity light, working at the very threshold of
visual perception of a specially designed light stimulus. In particu-
lar, the “fingerprint” in this method is the optical loss suffered by
light along its propagation from the cornea to the retina.

In our previous work,5 the visual stimulus was supposed to
originate from laser light. However, the number of photons in a
pulse of laser light is known to fluctuate from pulse to pulse
around a mean value, and these Poissonian fluctuations limit the
performance of the authentication process as will be outlined later.
Interestingly, quantum optical technology can now offer “quantum
light” sources, in particular, single-photon sources, producing light
with a much narrower distribution of the photon number. We will
here show how such a quantum light source translates into a con-
crete quantum advantage of the authentication process, namely, a
reduction in the interrogation time.

Besides its applied perspective, this work further signifies the
promise of the emerging field of quantum vision,6–11 one aspect of
which is the use of quantum light sources to study human or
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animal vision at a deeper level than was previously possible with
classical light sources.

II. PRELIMINARIES

Our biometric authentication methodology was inspired by
the early experiment of Hecht et al.,12 eloquently described in
modern terms by Bialek.13 Hecht et al. unambiguously demon-
strated that rod cells, the scotopic photoreceptors in our retina, are
efficient photon detectors; moreover, they identified a threshold in
the number of detected photons for visual perception to take place.
We denote this threshold by K, which is found12 to be K � 6.
Parenthetically, a recent psychophysical experiment14 performed
along similar lines, but using a modern single-photon source for
the stimulus light, found that K � 1. In any case, to our under-
standing, the precise value of K and its possible relation to the par-
ticular physiological condition of the subject is still an open
problem.

In more detail, the three authors in Ref. 12 had their eyes illu-
minated by very weak-intensity light pulses, with the integrated
photon number within each pulse being so small, that the visual
perception became probabilistic, with the probability of seeing
denoted by Psee. An expression for Psee can be found as follows.
Denote by ~N the mean number of photons within a light pulse of
duration τ. Coherent light has Poissonian photon statistics, i.e., the
probability to have exactly n photons within such a pulse is
~N
n
e�~N=n!. Of course, the authors in Ref. 12 did not have lasers;

however, it is known that for averaging times (in this case, the light
pulse duration τ) longer than the correlation time of a classical
light source the photon statistics are again Poissonian.15

However, when the mean number of photons per pulse inci-
dent on the eyeball is ~N , the actual mean number of photons per
pulse detected by the retina’s photoreceptors is reduced by a factor
0 , α , 1. This factor describes the optical losses suffered by light
along its path from the cornea to the retina, as well as the probabil-
ity of photodetection by the illuminated photoreceptors. Now, the
probability that the number of photons detected by the illuminated
patch of the retina is exactly n is given by (α ~N)

n
e�α~N=n!. If this

number is higher than the detection threshold K , whatever its
value, then the perception of “seeing” a spot of light will take place.
Thus, the probability of seeing is

Psee ¼
X1
n¼K

(α ~N)
n
e�α ~N

n!
: (1)

In Fig. 1, we plot examples of the dependence of the probabil-
ity Psee on the mean number of photons per pulse incident on the
cornea, ~N . In Fig. 1(a), we keep the threshold K constant at the
value of K ¼ 6 and change the loss factor α, whereas in Fig. 1(b)
we keep α constant at the value α ¼ 0:10, and change K . Both
dependences are rather obvious to interpret. It is important to note
that the change of α [Fig. 1(a)] hardly changes the overall shape of
the functional dependence of Psee vs ~N and essentially shifts the
figure along the x-axis. In contrast, the change of K qualitatively
changes the shape of the dependence of Psee vs ~N . Now, although
each one of the three authors in Ref. 12 produced a different
dependence of Psee vs ~N , all three curves could be coalesced by

such a translation along the x-axis, and all could be fit with a
common value of K � 6. This is shown in Fig. 1(c).

The authors in Ref. 12 managed to make a remarkable case,
despite the presence of a subjective observable, as is the optical loss
parameter α, which changes among individuals and perplexes the
analysis of individuals’ responses to perceiving or not faint light
pulses. The case is about two objective properties of the human
visual system. The first has to do with the wiring of the photorecep-
tor cells to deeper neural layers communicating visual responses to
the brain. This wiring determines the perception threshold K ,
which appears to be a common systemic property. The second is
that retina’s photoreceptors are efficient single-photon detectors.
This follows from the fact that the experimentally inferred number
of photons at the retina [see x-axis of Fig. 1(c)] is much smaller
than the number of illuminated rod cells. It took several years until
the quantum photo-detection properties of rod cells were unraveled
with modern photonic and quantum-optical technology.16–23

III. QUANTUM BIOMETRICS

Our proposal on quantum biometrics5 essentially turns the
coin around: the variability of the parameter α among individuals
was a nuisance for Hecht et al., who were aiming at the
single-photon-detection capability of rod cells. We now know this
physiological capability is indeed the case. Instead, we would like to
use the variability of the parameter α as a biometric quantifier.
However, just one number is not enough as a biometric “finger-
print.” Hence, the idea put forward in Ref. 5 is that the relevant
“fingerprint” is a whole map of α values, the so-called α-map. This
results from considering several paths of light toward the retina,
illuminating the retina at several different spots. This point has to
do with visual optics and will be further elaborated upon
elsewhere.24

The crux of the matter is illustrated in Figs. 1(d)–1(f ).
Suppose we have an array of, e.g., nine laser beams, patterned in a
3� 3 matrix [Fig. 1(d)]. Further suppose that these beams are all
illuminated simultaneously; moreover, let us assume that the mean
photon number per beam per pulse is very large, say, �100
photons. In such a scenario, every subject (without any visual defi-
ciency) will report seeing nine spots [Fig. 1(e)]. This is because,
with certainty, everybody will perceive a pulse containing a large
number of photons [far right in the curves of Figs. 1(a)–1(c),
where Psee � 1]. However, as we reduce the mean photon number
per laser beam per pulse, and move to the regime of the visual
threshold described by the variable Psee in Figs. 1(a)–1(c), each
individual will report different patterns of perception, as shown in
Fig. 1(f ). This difference in perception in the regime of the visual
threshold is exactly what our biometric identification scheme takes
advantage of.

To describe the methodology in more detail, we first note that
as in all such psychophysical measurements with very weak light,
the subject has to undergo dark adaptation, in order for scotopic
rod vision to dominate the visual process. One prerequisite of our
methodology is that the α-map of the subject that will need to be
authenticated by the biometric device has been already measured
and stored. This is like taking a subject’s fingerprint and registering
it in the relevant database. The process of registering the subject’s
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“fingerprint” for the first time as well as the relevant ageing effects
will be addressed elsewhere.24

When the subject wants to be authenticated, the biometric
device must implement a measurement protocol, the result of
which is either positive or negative. Thus, two central quantifiers of
its performance are the false-negative and false-positive probability,
denoted by p fn and p fp, respectively. The former is the probability
that a subject truly claiming to be who he or she is, is not authenti-
cated as such. The latter is the probability that an impostor falsely
claiming to be somebody else is positively identified as that other
person. Obviously, the longer the authentication process, the
smaller these two probabilities should become. Hence, a third
important performance quantifier is how much time is required to
achieve a given desired value for p fn and p fp.

To proceed, we note that central to the authentication algo-
rithms described in Ref. 5, as well as the one described here is that

we choose to work with retinal spots associated with either too
high or too low values of α. Let us call Alice the subject who
appears and wishes to be positively authenticated. Eve will be an
impostor maliciously claiming to be Alice. We will suppose that
Eve is not aware of Alice’s α-map. As a result, Eve does not know
whether the device is illuminating a low-α or a high-α spot of Alice
and, thus, cannot tune her responses accordingly. The spots being
illuminated are randomly chosen by the device, and as far as Eve is
concerned, they could be of any kind. Moreover, the device illumi-
nates every spot, no matter of what kind, with the same mean
number of photons per pulse. Thus, even if Eve is equipped with a
perfect photon counter, she would just measure light pulses with a
given mean number of photons. This measurement does not
convey to her any useful information. Further, since she is not
aware of Alice’s α-map, even if Eve is equipped with a perfect
position-sensitive photon detector, she still cannot extract any

FIG. 1. Probability of seeing a light pulse having mean incident photon number per pulse ~N vs ~N, as calculated from Eq. (1), for (a) various values of the optical loss
parameter α, and constant perception threshold K , and (b) various values of K and constant α. (c) Experimental results of Ref. 12 for the probability of seeing by the
three authors [figure reproduced with permission from Bialek, Biophysics: Searching for Principles (Princeton University Press, 2012). Copyright 2012 Princeton University
Press]. In this figure, the x-axis is the inferred number of photons at the retina, i.e., the authors in Ref. 12 have shifted the curves of Psee along the x-axis using some
factor α for each one of the three authors. This results in a “universal” response apparently having a common threshold K . For these authors, the difference in the α value
among them was a nuisance for what they were trying to achieve, i.e., demonstrate the single-photon detection capability of rod cells. For us, this difference in α is taken
advantage of to define our biometric quantifier. (d)–(f ) Simplified presentation of the idea behind the biometric authentication using the photon counting capability of the
human visual system. (d) A light stimulus source is supposed to provide for parallel laser beams patterned in an array, here shown as a 3� 3 array. The laser beams
propagate in parallel from the source to the eye, being incident on the cornea, all being simultaneously illuminated during a given pulse. If one could see the reflection of
the laser beams off the cornea, one would see the image (d), where the pupil is shown to be illuminated by nine spots. (e) With each laser beam containing a large
number of photons per pulse and further assuming that the human subject being illuminated is myopic, everybody would report seeing nine different spots patterned in
such a 3� 3 array. (f ) However, if the number of photons per beam per pulse is reduced to the regime of 10–100 photons, the visual perception would be working close
to its threshold. In such a case, the optical losses suffered by light along these nine different paths, different among paths for each individual, and different for a “geometri-
cally similar” path among individuals will result in a different perception pattern for each subject.
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useful information from any stimulus light patterns emitted by the
biometric device. Eve is forced to respond randomly to the device’s
interrogations on whether the subject does perceive or does not per-
ceive the light flashes. We will now quantify all of the above using a
specific authentication protocol, which is a variant of the protocols
given in Ref. 5. This variant and its modification when using a
quantum light source are straightforward to understand.

A. Authentication protocol

We assume that the device simultaneously illuminates N dif-
ferent retinal spots, a random number H of which are high-α spots,
the rest being low-α spots. The interrogated subject is then ques-
tioned on how many spots she perceived. We accept her answer, R,
as correct, if R ¼ H. There are two competing mechanisms that
push Alice toward failure: the possibility that she does not see an
illuminated high-α spot and the possibility that she does see an
illuminated low-α spot.

B. Eve’s strategy

Suppose Eve comes along claiming to be Alice and asking to
be authenticated. We assume that Eve has access to the identifica-
tion protocol and knows the distribution of the random variable H.
Further suppose that she is equipped with perfect position-sensitive
photon counters. She, thus, finds that N spots are being illumi-
nated. Her answer on the device’s interrogation about how many
spots she perceived can be a random variable, call it X, which she
chooses with some strategy. For sure, X ⫫H, that is, X is indepen-
dent of H, since Eve does not know how many spots of which kind

(high-α or low-α) are being illuminated. Thus, for her answer, she
must use a random variable X independent of H, chosen so that
the probability P[X ¼ H] is maximized. But, it is

P[X ¼ H] ¼
XN
m¼0

P[X ¼ m, H ¼ m]

¼
XN
m¼0

P[X ¼ m]P[H ¼ m]: (2)

The second line follows from the independence of X from H and
is a weighted average, which is maximized when the random varia-
ble X assumes those values m that maximize the probability
P[H ¼ m], that is, the modes of the distribution of H. For
example, if H is unimodal, Eve’s optimal response must be the
mode of the distribution. In any case, since the range of values of
H is {0, 1, . . . , N}, there must be some m [ {0, 1, . . . , N} for
which P[H ¼ m] � 1=(N þ 1). Thus,

max
X⫫H

P[X ¼ H] � 1
N þ 1

: (3)

C. Device’s interrogation strategy

In view of the preceding analysis, the biometric device should
choose the distribution of H to be as uninformative as possible, i.e.,
to be uniform on {0, 1, . . . , N}. That is,

P[H ¼ k] ¼ 1
N þ 1

, k ¼ 0, 1, . . . , N:

In such a case, regardless of her answer, Eve will have probability
1

Nþ1 to answer correctly.

D. Positive authentication of Alice

We next consider Alice’s probability of a successful answer,
i.e., the probability P[Y ¼ H], where Y stands for the number of
spots Alice perceives. It is helpful to consider the number E fn of
high-α spots that Alice fails to perceive, as well as the number E fp

of low-α spots that Alice perceives. Clearly, Y ¼ (H � E fn)þ E fp,
and Alice succeeds if the number of false-positive perceptions is
equal to the number of false-negative perceptions. If Alice fails to
perceive a stimulus on a high-α spot with probability pH , and she
perceives a stimulus on a low-α spot with probability pL, then, con-
ditionally on H ¼ k, E fn and E fp are independent binomial
random variables, with parameters (k, pH) and (N � k, pL), respec-
tively. The following Lemma is of interest on its own and does not
have an immediate combinatorial interpretation. The proof is given
in the Appendix.

Lemma 1 Suppose H is uniformly distributed on
[n] :¼ {0, 1, . . . , n} and, conditionally on {H ¼ k}, the random
variables Q and W are independent binomial with parameters

FIG. 2. Probability of Alice, PA, and probability of Eve, PE , correctly responding
to one interrogation, consisting of illuminating a number of N spots in total
(some of which are high-α and the rest low-α) and asking how many spots the
subject perceived. The response counts as correct if the number of perceived
spots equals the number of illuminated high-α spots. The probability PA
depends on u ¼ pH þ pL, which is the sum of the probability that Alice does
not perceive an illuminated high-α spot, pH , and the probability that she does
perceives a low-α spot, pL. The value of u depends on the photon statistics of
the light; hence, narrower photon number distributions suppress u and, thus,
provide for a quantum advantage. For this figure, N ¼ 6.
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(k, p) and (n� k, q). Then,

P[Q ¼W] ¼ 1� (1� (pþ q))nþ1

(nþ 1)(pþ q)
:

By setting u ¼ pH þ pL, a direct consequence of the Lemma is
that Alice’s probability of success reads

PA ¼ PA(N , u) ¼ 1� (1� u)Nþ1

(N þ 1)u
: (4)

For example, for N ¼ 6 spots and u ¼ 0:1, Alice succeeds in one
interrogation with probability PA ≃ 0:745, while an impostor, Eve,
succeeds with probability PE ¼ 1=7 ≃ 0:143. The probabilities PA
and PE are plotted in Fig. 2. As will become clear in the following,
the value of u ¼ pH þ pL for Alice depends on the photon statistics
of the illuminating light source, so this is the point where the
quantum advantage comes in.

E. Repeating the test to achieve a given pfp and pfn

In Fig. 3, we show how the authentication algorithm works.
As mentioned above, the biometric device has stored Alice’s
α-map, so it can classify Alice’s retinal spots into high-α spots, for
which Alice has a high probability of seeing the light flash, and
low-α spots, for which this probability is low. The device chooses
the number N of spots it will illuminate (step 1). In the example of
Fig. 3, it is N ¼ 5. The specific value of N is the result of an opti-
mization to be presented in the following.

We also define a success parameter S, which is initiated at the
value S ¼ 0 (step 2). Then, the device randomly selects a number
H [ {0, 1, . . . , N} (step 3) and illuminates H spots of the type
“high-α” and N–H spots of the type “low-α” (step 4). In the
example of Fig. 3, it is H ¼ 2. The subject is then (step 5) interro-
gated on how many bright spots she perceived. If her answer equals
H, then we update the success parameter to S ¼ Sþ 1, otherwise
to S ¼ S� 1. In the last step of the algorithm, S is compared with a
positive upper value Sþ . 0 and with a negative lower value
S� , 0. If S ¼ Sþ, we stop the interrogation process, authenticating
the subject as Alice. If S ¼ S�, then we stop the process with a neg-
ative authentication, i.e., the subject is not Alice. Otherwise, we
return to step 3 of the algorithm.

The choice of Sþ and S� depends on the desired values of p fp

and p fn, as follows. Both Alice and Eve perform a random walk in
S-space with unit step and probabilities PA and PE , respectively, for
a positive step, and 1� PA and 1� PE , respectively, for a negative
step. If by τS+ ¼ inf {k � 0 : Sk ¼ S+} we denote the interrogation
round in which S first reaches S+, then31 the probability that Eve’s
success parameter reaches the value Sþ and, thus, Eve is falsely
identified as Alice is

PE[τSþ , τS� ] ¼
1� NS�

NSþ � NS�
⪅ N�Sþ : (5)

Thus, Eq. (5) is the probability that Eve will reach the value
Sþ expected for Alice’s authentication before reaching the value
S� expected for Eve’s non-authentication. To ensure that this

probability is smaller than the specified tolerance p fp, we may
choose Sþ ¼ Sþ(N) to be

Sþ(N) ¼ � log p fp

logN

� �
, (6)

where dxe stands for the smallest integer greater than or equal
x [ R.

Similarly, the probability that Alice’s S parameter drifts to the
low value S� and, thus, Alice is falsely not authenticated, is equal
to

PA[τS� , τSþ ] ¼
1� 1�PA

PA

� �Sþ

1�PA
PA

� �S�� 1�PA
PA

� �Sþ
⪅ PA

1� PA

� �S�
: (7)

To ensure that this probability is smaller than the specified toler-
ance p fn, we may choose

S� ¼ S�(N) ¼ log p fn

log PA
1�PA

� �
6664

7775, (8)

where bxc stands for the greatest integer not exceeding x [ R.

IV. QUANTUM ADVANTAGE USING QUANTUM LIGHT

We are now in position to explore the quantum advantage
brought about by quantum light, in particular, a single-photon
source. Since the temporal summation window25 of the visual
system is on the order of τts � 400ms, we can use a single-photon
source, for example, a heralded single-photon source,26–29 to
produce a maximum of ~N � 200 photons within a time interval
τts, i.e., we need a production rate of at most 1 kHz, which is
readily feasible. In the ideal case, the probability distribution of the
number of photons incident on the cornea will be p(n) ¼ δn,~N .

It is known, however, that optical losses degrade the
sub-Poissonian statistics of quantum light. Hence, if a pulse of light
containing exactly ~N photons propagates inside the lossy material
of the eye, the statistics of the number of detected photons will not
be a spiked distribution like p(n), but a broader distribution. Since
the optical losses quantified by the parameter α are not insignifi-
cant, the distribution of the detected photon number is not very far
from the case of coherent light discussed previously. Yet, we will
show that single photons do enhance performance, which demon-
strates that quantum light sources can indeed be useful in address-
ing human vision.

The photon number after propagation through the lossy mate-
rial is given for a quantum or a coherent light pulse, respectively,
by

Pq ¼
X~N
i¼1

Wi and Pc ¼
XM
i¼1

Wi: (9)

In the preceding equation, M is the Poisson random variable with
mean ~N , and, for an optical loss parameter α, Wi are Bernoulli(α)
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random variables that indicate whether the ith photon of the pulse
was detected or not. In particular, the distribution of Pq is binomial
with parameters (~N , α), i.e.,

pq(n; α) ¼
~N!

n!(~N � n)!
αn(1� α)

~N�n, n ¼ 0, 1, . . . , ~N , (10)

whereas the distribution of Pc is Poisson with mean α ~N , i.e.,

pc(n; α) ¼ e�α~N
(α ~N)n

n!
, n ¼ 0, 1, . . . : (11)

It follows from Theorem 8.A.13 (b) in Ref. 30 that Pc dominates Pq
in the convex order, i.e., for every convex function f on Zþ,

E[f(Pq)] � E[f(Pc)]: (12)

Comparison in the convex order essentially compares the con-
centration around a common mean; thus, (12) indicates that Pc has
a broader distribution than Pq. For instance, taking
f(x) ¼ (x � α ~N)

2
, we see that Pc has larger variance than Pq.

Indeed, the variance of the number of photons detected at the
retina is V(Pc) ¼ α ~N with coherent light, whereas the correspond-
ing variance with quantum light is V(Pq) ¼ α(1� α)~N . In
Fig. 4(a), we show an example of the slight difference of the two
distributions, Eqs. (10) and (11), for α ¼ 0:16 and ~N ¼ 60
photons.

Now, the probability that Alice fails to perceive an illuminated
high-α spot is

pH(~N) ¼
XK�1
n¼0

p(n; αH), (13)

whereas the probability that Alice does perceive an illuminated
low-α spot is

pL(~N) ¼ 1�
XK�1
n¼0

p(n; αL): (14)

In these expressions, the probability mass function p(n; α) is equal
to either pq(n; α) of Eq. (10) for quantum light or to pc(n; α) of
Eq. (11) for laser light. The parameter u ¼ pH(~N)þ pL(~N) enters
Eq. (4), giving the probability that Alice succeeds in one particular
interrogation. An example of the dependence of the parameter u
on the incident mean photon number ~N is shown in Fig. 4(b). It is
seen that u is minimized at ~N ≃ 69:32 for laser light and ~N ¼ 68
for single photons, the minimum being uc ¼ 0:0983 and
uq ¼ 0:0838, respectively. (Note that for a coherent state relevant to
laser light ~N is a continuous variable.)

A. Number of interrogations

Having found Alice’s parameter u for a given set of values αH

and αL, we can use Eq. (4) to determine the mean number, TA, of
interrogations required for Alice’s authentication, and choose the
number of illuminated spots, N , to minimize TA. Indeed, by

FIG. 3. Authentication algorithm. We suppose the biometric device has already measured and stored Alice’s α-map and has classified her retinal spots (in this example,
in a grid of 5� 5 spots) into high-α and low-α spots, shown in the inset as red squares and blue circles, respectively. A subject approaches the device and claims to be
Alice. The first step of the authentication algorithm is to choose a number N of spots to illuminate, in this example N ¼ 5. Then, we initiate the success variable S to the
value S ¼ 0. In the third step, we uniformly sample H [ {0, 1, . . . , N}. In step 4, we choose H high-α and N � H low-α spots to illuminate. In this example, H ¼ 2,
which means that the device will illuminate two high-α spots and three low-α spots, as in step 4. In step 5, the subject is interrogated on the number of spots she per-
ceived, and if her answer is H, the success variable S is updated by S ¼ Sþ 1, otherwise S ¼ S� 1. In the final step 6, the device compares S with S� and Sþ, which
are defined in the text and are derived from the required performance on p fp and p fn. As long as S� , S , Sþ, we repeat the algorithm going back to step 3. In case S
reaches Sþ the algorithm stops and the subject is authenticated as Alice, whereas if S reaches S� the subject is not authenticated as Alice.
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Theorem 1.3.5 in Ref. 31, we find

TA ¼ Sþ
2PA � 1

� Sþ � S�
2PA � 1

PA[τS� , τSþ ] ⪅
Sþ

2PA � 1
, (15)

where the second term in the exact expression for TA was neglected
as it is proportional to p fn � 1, and where Sþ ¼ Sþ(N) is given by
(6), S� ¼ S�(N) is given by (8), and PA ¼ PA(N , u) is given by (4).
In Fig. 4(c), we plot TA vs the number of illuminated retinal spots
(pixels) N for the two cases we consider, i.e., laser light and single
photons. It is seen that for laser light the optimal number of
expected interrogations is TA ≃ 26:1, with the optimal number
of spots being N ¼ 6. For single photons, we find an optimal of
approximately 23.1 expected interrogations with N ¼ 6 illuminated
spots, i.e., we gain about 11.4% in total interrogation time. Finally,
if we consider the photon number as a resource, the fact that the
optimal photon number per pulse for quantum light (~N ¼ 68) is
somewhat smaller than the corresponding number for laser light
(~N ¼ 69:32) pushes the total advantage to 13.1%.

V. DISCUSSION

We have here presented an intuitive biometric authentication
process using the human visual system’s ability to perform photon
counting. The process rests on the perception of a number of illu-
minated spots on the retina. The performance of the authentication
process in terms of false positive and false negative probability, as
well as the interrogation time required to realize those two proba-
bilities, is determined by the photon statistics of the stimulus light.
We have shown that a single-photon source provides an advantage,
even though the optical losses, which form the biometric finger-
print, degrade the sub-Poissonian statistics of the quantum stimu-
lus light. Two comments are to be made. First, one might claim
that the quantum advantage is small. However, a significantly
larger quantum advantage cannot be excluded. This is because it is
not straightforward to find the ultimate quantum limit of the
general methodology, independent of the specific authentication
strategy. Indeed, since the visual perception involves a number of
nonlinearities, one might expect to be able to enhance the small
difference in photon statistics between laser light and quantum
light (at the photon detection level discussed previously) by design-
ing another interrogation strategy. In the same context, one might
argue that despite the quantum advantage shown here, the number
of required interrogations is anyhow large. This is the reason we
previously5 devised an authentication strategy based on pattern rec-
ognition. This strategy led to a much faster authentication time
with the same performance metrics. However, this strategy depends
on further assumptions on the workings of visual perception and
pattern recognition. In contrast, with the simple strategy considered
herein, we aimed at a straightforward to understand, and analyti-
cally tractable demonstration of the promise of quantum light
sources for studying the human visual system, in general, and our
biometric authentication methodology, in particular.
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APPENDIX: PROOF OF LEMMA 1

The proof of the Lemma is as follows:

P[U ¼ V] ¼ 1
nþ 1

Xn
k¼0

P[U ¼ V j H ¼ k]

¼ 1
nþ 1

Xn
k¼0

Xk
j¼0

P[U ¼ jj H ¼ k] P[V ¼ jj H ¼ k]

¼ 1
nþ 1

Xn
k¼0

Xk
j¼0

k
j

� �
n� k
j

� �
p j(1� p)k�jq j(1� q)n�k�j:

(A1)

For a set A , [n] of odd cardinality and median k, and for
x [ [n], we define

c(x, A) ¼

p, if x [ A and x , k
1� p, if x � A and x , k
1, if x ¼ k
q, if x [ A and x . k
1� q, if x � A and x . k

8>>>><
>>>>:

(A2)

and c(A) ¼Qn
x¼0 c(x, A). It is immediate that if jAj ¼ 2jþ 1, then

c(A) ¼ p j(1� p)k�jq j(1� q)n�k�j. On the other hand, there are

precisely k
j

� �
n�k
j

� �
sets A , [n] with median k and cardinality

jAj ¼ 2jþ 1, since there are k
j

� �
ways to choose the j elements of A

in {0, . . . , k� 1} and n�k
j

� �
ways to choose the j elements of A in

{kþ 1, . . . , n}. Hence, with γn : ¼
P

A,[n]
jAjodd

c(A), it is

γn ¼
Xn
k¼0

Xk
j¼0

k
j

� �
n� k
j

� �
p j(1� p)k�jq j(1� q)n�k�j: (A3)

We can straightforwardly compute

γ0 ¼ 1 and γ1 ¼ 1� pþ 1� q ¼ 2� (pþ q): (A4)

For n � 2, we have

γn ¼
X

{0,n},A,[n]
jAjodd

c(A)þ
X

A,[n],{0,n}>Ac=;
jAjodd

c(A)

¼
X

{0,n},A,[n]
jAjodd

c(A)þ
X

A,[n], 0�A
jAjodd

c(A)

þ
X

A,[n], n�A
jAjodd

c(A)�
X

A,[n], 0,n�A
jAjodd

c(A): (A5)

If 0, n [ A then

c(A) ¼ pq
Yn�1
x¼1

c(x, A) ¼ pq
Yn�2
x¼0

c(x, ~A) ¼ pq c(~A),

where ~A ¼ A n {0, n}� 1 , [n�2]. Hence,

X
{0,n},A,[n]
jAjodd

c(A) ¼ pq
X
~A,[n�2]
j~Ajodd

c(~A) ¼ pq γn�2:

Likewise,

X
{0,n},Ac,[n]
jAjodd

c(A) ¼ (1� p)(1� q)
X
~A,[n�2]
j~Ajodd

c(~A)

¼ (1� p)(1� q)γn�2 (A6)

and

X
A,[n], 0�A
jAjodd

c(A) ¼ (1� p) γn�1,
X

A,[n], n�A
jAjodd

c(A) ¼ (1� q) γn�1:

We may now substitute the preceding relations in (A5) to get the
recursive equation

γn ¼ (2� p� q)γn�1 þ (pþ q� 1)γn�2, for all n � 2:

In view of the initial condition (A4), the assertion of the Lemma
can now be proved inductively, or simply by noting that γn
depends on p, q only through pþ q and setting q 0, p pþ q
in Eq. (A1).
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