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Effects of spin-exchange collisions on the fluctuation spectra of hot alkali-metal vapors
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We present a first-principles analysis of the noise spectra of alkali-metal vapors in and out of the spin-
exchange-relaxation-free (SERF) regime, and we predict nonintuitive features with a potential to further improve
the sensitivity of SERF media, and which must be taken into account in their use in quantum optical applications.
Studying the process of spin-noise spectroscopy (SNS), we derive analytic formulas for the observable noise
spectra, and for the correlation functions among different hyperfine components, which give additional insight
into the spin dynamics. The analytic results indicate a variety of distortions of the spin-noise spectrum relative to
simpler models, including a broad spectral background that mimics optical shot noise, interference of noise
contributions from the two ground-state hyperfine levels, noise reduction at the spin-precession frequency,
and “hiding” of spin-noise power that can introduce a systematic error in noise-based calibrations, e.g., for
spin-squeezing experiments.
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I. INTRODUCTION

Hot alkali-metal vapors are a workhorse medium for many
atomic sensing tasks, including magnetometry [1], magnetic
gradiometry [2,3], comagnetometry [4,5], alkali-metal–noble-
gas gyroscopes [6,7], and quantum memories [8], as well as
tabletop searches for new physics [9–11]. Recent works have
also shown that these media support nonclassical correlations
[12–16], allowing quantum enhancement techniques, e.g.,
squeezing of light or of spins, to improve their performance
[17–20]. Detailed models for the behavior of such devices
include intra- and interatomic spin dynamics, response to
probe and pumping light, and external fields [21,22]. In these
models, spin-exchange (SE) collisions play an important role,
and in practice they often limit the spin-coherence time and
consequently the performance of these devices.

SE collisions [23,24] between pairs of alkali-metal atoms,
together with the intra-atomic spin dynamics and coupling
to external fields, lead to nonintuitive relationships among
atomic number density, magnetic field, and coherence time
[25]. At low densities or high fields, SE collisions are a
decoherence mechanism, causing spin coherence times to de-
crease with increasing density. In the so-called spin-exchange
relaxation-free (SERF) regime of high density and low field,
however, frequent SE collisions decouple the net spin from de-
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coherence via the external field, and coherence times increase
with increasing density [26,27].

Spin-noise spectroscopy (SNS) provides a window into
the nonintuitive spin dynamics of dense atomic vapors [28].
SNS measures the spin fluctuations of an atomic spin ensem-
ble, driven only by random influences such as collisions and
diffusion of spins into and out of the system. These spin dy-
namics show correlations that reflect the magnetic resonance
spectral response [29–31], and they are acquired without ex-
citation of the medium. In particular, the spin-noise spectrum
of an unpolarized vapor reveals the vapor’s transition from
spin-exchange and SERF regimes, including the nonintuitive
linewidth behavior [12,29,32].

Despite recent experimental and theoretical study of the
noise properties of SERF-regime vapors, nearly all work has
focused on the most prominent feature, which is a Lorentzian-
like peak at the Larmor frequency (taking into account nuclear
slowing). In this work, we calculate from first principles the
full spin-noise spectrum of a hot alkali-metal vapor, includ-
ing the effects of hyperfine, Zeeman, and spin-exchange on
the vapor, and the effects of probe detuning on the coupling
to the different ground hyperfine states Fa and Fb. We find
features not previously remarked, including a spectrally broad
spin-noise background that mimics optical shot noise, depar-
ture of the spin-noise spectrum from the Lorentzian shape,
a probe-detuning-dependent “interference” of noise contribu-
tions from Fa and Fb, and in some circumstances a significant
reduction of spin-noise at the precession frequency. We also
describe how, in typical experimental conditions, the inte-
grated spin-noise power can deviate by as much as 20% from
the predictions of simpler models. This can significantly affect
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the use of spin-noise of unpolarized vapors to benchmark
quantum noise, e.g., in quantum sensing.

The paper is organized as follows. In Sec. II, we present
the statistical model for the spin dynamics, first in terms of
a master equation describing the evolution of the single-atom
density matrix ρ, and then in terms of an equivalent stochastic
Bloch equation that governs the collective spin observables F̂a

and F̂b. The spin readout, by Faraday rotation, is described by
input-output relations for the probe beam’s Stokes operators,
including intrinsic polarization noise. In Sec. III, we derive an-
alytic results for correlation functions and spectra. In Sec. IV,
we predict several observable SNS phenomena based on the
analytic results.

II. MODEL

A. Spin dynamics—Master equation

In the presence of a constant magnetic field B, the an-
gular momenta in the two hyperfine multiplets precess in
opposite directions. Spin-exchange collisions transfer the
atoms between the two hyperfine manifolds, resulting in a
spin-dephasing evolution captured by the single-atom density
matrix equation [22]

dρ

dt
=− i

h̄
[Ahf Î · ŝ+gsμB ŝ · B, ρ] + Rse[ϕ̂(1 + 4〈ŝ〉 · ŝ) − ρ],

(1)

where Ahf is the hyperfine coupling constant, gs ≈ 2 is the
electron g-factor, μB ≈ 9.27 × 10−24 JT−1 is the Bohr mag-
neton, Rse is the spin-exchange rate, 〈ŝ〉 = Tr[ρ ŝ] is the
expectation value of the electronic spin in the state ρ, and ϕ̂ =∑3

i=0 ŝiρ ŝi is the electron-spin-depolarized density operator.
Here, ŝ0 ≡ 1/2 and {ŝ1, ŝ2, ŝ3} = {ŝx, ŝy, ŝz}. The steady-state

solution of Eq. (1) is the thermal spin state ρeq = eβ·f̂/Tr[eβ·f̂ ],
where f̂ ≡ f̂a + f̂b is the total angular momentum in the
ground state, with a = I + 1/2 and b = I − 1/2, and β is the
inverse spin-temperature related to the spin-polarization P ≡
〈ŝ〉/s as β || P, β j = ln[(1 + Pj )/(1 − Pj )] with j ∈ {x, y, z}
[33,34]. In Eq. (1) we have ignored the SE frequency shift,
which is negligible for a low-polarized vapor and the small
interaction of the nuclear spin with the magnetic field. Fi-
nally, regarding the angular momentum degrees of freedom,
the dimension of the Hilbert space in the ground state and
subsequently of the operators entering Eq. (1) is d ≡ (2s +
1)(2I + 1).

The applied magnetic field exerts a torque both on the
electron and the nuclear spin. Since the nuclear g-factor
is significantly smaller than the electron’s gs, the angular
momenta in the two hyperfine levels precess according to
d〈f̂α〉/dt ≈ 〈ŝα〉 × γ0B with α ∈ {a, b}. The mean value of
the electron spin operator, projected in the two hyperfine
levels, is related to the corresponding total angular momen-
tum operator through the relations 〈ŝa〉 = 〈f̂ a〉/(2I + 1) and
〈ŝb〉 = −〈f̂ b〉/(2I + 1), respectively [35].

Equation (1) is a nonlinear ordinary differential equa-
tion describing the evolution of the single-atom density
matrix. The term containing 〈ŝ(t )〉 makes the equation non-
linear, and its general solution is difficult without resorting to
numerical techniques. In SNS scenarios with unpolarized en-

sembles, however, the vapor is at most weakly polarized, i.e.,
|〈ŝ〉| � 1/2. This allows the master equation to be linearized,
as in [27], to obtain analytic solutions. More details can be
found in Appendix A. In what follows, we consider only this
weakly polarized regime.

B. Spin dynamics—Bloch equations

Equation (1) describes well the evolution of the mean
spin polarization, but it does not give information about fluc-
tuations about this mean. To study these, it is convenient
to introduce collective spin observables F̂α ≡ ∑Nat

i=1 f̂α
i , α ∈

{a, b}, where f̂α
i is the single-atom spin observable of the ith

atom, and Nat is the number of atoms. Observable signals and
their moments can then be computed as, e.g., 〈F̂α〉 = Tr[ρ̃F̂α]
or 〈F̂α

i F̂β
j 〉 = Tr[ρ̃F̂α

i F̂β
j ], where ρ̃ is the many-atom state.

As described in [27,36–39] and in Appendix A, in the low-
polarization regime, Eq. (1) implies the following differential
equations for 〈F̂a〉 and 〈F̂b〉, known as the hyperfine Bloch
equations:

d〈F̂a〉
dt

= 〈F̂a〉 × γ0B − Rseκaa〈F̂a〉 + Rseκab〈F̂b〉, (2)

d〈F̂b〉
dt

= −〈F̂b〉 × γ0B − Rseκbb〈F̂b〉 + Rseκba〈F̂a〉. (3)

Here γ0 = γe/(2I + 1) is the atomic gyromagnetic ra-
tio, with γe = gsμB/h̄ ≈ 2π × 2.8 × 104 MHz T−1 being the
electron gyromagnetic ratio, when neglecting the small con-
tribution of the nuclear Zeeman term, ω0 = γ0B is the
linear Larmor frequency resulting from the diagonalization of
the Breit-Rabi Hamiltonian Ĥ = Ahf Î · ŝ + gsμB ŝ · B at low
magnetic fields, and Rse = nσseu is the spin-exchange rate,
with σse ≈ 2 × 10−14 cm2 being the spin-exchange cross-
section and u the mean relative velocity of the pairwise
collisions. The coefficients καβ with α, β ∈ {a, b} describe
the relaxation and the coupling between the two hyperfine
multiplets. Following Appendix A, for a = I + 1/2 and b =
I − 1/2 it is useful to express the coefficients καβ in terms of
the nuclear spin

κba = κaa = 2

3

I (2I − 1)

(2I + 1)2
, (4)

κab = κbb = 2

3

(2I + 3)(I + 1)

(2I + 1)2
. (5)

From Eqs. (2) and (3) we obtain that d (〈F̂a〉 + 〈F̂b〉)/dt does
not depend on Rse. Moreover, at B = 0 the total angular
momentum of the two ground-state levels 〈F̂a〉 + 〈F̂b〉 is a
constant of motion.

The coupled system of differential equations in Eqs. (2)
and (3) captures the peculiar features of the spin-exchange
interaction in a dc magnetic field, specifically the narrowing of
the magnetic resonance spectrum in the SERF regime, as well
as the frequency shift of the resonance frequency ω0 towards
lower frequencies. Both of these effects are a consequence
of the rapid transfer of angular momentum between the two
hyperfine multiplets, and they start to become significant
when the spin-exchange rate is comparable or exceeds the
spin-precession frequency ω0.
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C. Spin dynamics—Stochastic Bloch equations

Equations (2) and (3), which describe the evolution of
the statistical averages 〈F̂α〉, predict a relaxation toward
a zero mean polarization. This mean does not, however,
capture the full dynamics of F̂α , which fluctuate about
their averages in a correlated fashion. To account for
spin-noise fluctuations in the thermal spin state, we first
suppose that the magnetic field is transverse to the probe
beam, namely B = (0, B, 0)T along the ŷ-direction. Addi-
tionally, we define the angular momentum vector X̂(t ) ≡
[F̂ a

x (t ), F̂ a
y (t ), F̂ a

z (t ), F̂ b
x (t ), F̂ b

y (t ), F̂ b
z (t )]T and the corre-

sponding noise vector dŴ(t ) ≡ [dŴa
x (t ), . . . , dŴb

z (t )]T .
Here, dŴα

j (t ) with j ∈ {x, y, z} and α ∈ {a, b} represents
white Gaussian noise with zero mean and variance dt . In
addition, we assume that the angular momentum vector
X̂(t ) satisfies the stochastic differential equation dX̂(t ) =
AX̂(t )dt + QdŴ(t ), namely, we assume that the angular
momentum operators are stochastic variables, and we aug-
ment the deterministic differential equations with Gaussian
source noise terms associated with the spontaneous fluc-
tuations of the collective angular momenta in the two
hyperfine multiplets [40,41]. The additive Gaussian noise
terms entering the equation above are a consequence of
the central limit theorem since the collective spin variable
is randomly affected by many independent processes, e.g.,
many pairwise collisions with different impact parameters
[16].

Q is the noise-strength matrix resulting from the mi-
croscopic collisional dynamics and being associated with
the spin-variance in the corresponding collective state. The
assumption of low spin polarization and subsequently the
linearity (state independence) of Eqs. (2) and (3) imply
that the mean collective angular momentum variables will
always be close to zero. Accordingly, Q can also be as-
sumed to be state-independent. This assumption will be
further justified later in the paper, where only the com-
pletely unpolarized state is examined. As a consequence of
the linearity of the stochastic differential equation, the mean
of X̂(t ) follows the equation d〈X̂(t )〉 = A〈X̂(t )〉dt with the
solution

〈X̂(t )〉 = eAτ 〈X̂(0)〉. (6)

To describe the statistical properties of spin-noise, we will
make extensive use of two-time correlation functions: for ob-
servables Â and B̂, the covariance is RÂ,B̂(τ ) ≡ 〈Â(τ )B̂(0) +
B̂(0)Â(τ )〉/2 = Re[〈Â(τ )B̂(0)〉] since Â and B̂ are Hermi-
tian operators and (ÂB̂)† = B̂†Â† = B̂Â. Additionally, given
a column vector of observables V̂(t ) = (Â, B̂, Ĉ, . . . )T

with stationary statistical properties, the covariance matrix
is

RV̂,V̂(τ ) = 1
2 {〈V̂(τ )V̂T (0)〉 + [〈V̂(0)V̂T (τ )〉]T }

= Re[〈V̂(τ )V̂T (0)〉]. (7)

For commuting or classical observables V(t ), this is sim-
ply RV,V(τ ) ≡ 〈V(τ )VT (0)〉. Here, 〈·〉 denotes the average
over different and independent realizations of the acquisition
process. As usual, we assume that the system has equili-
brated, or equivalently that the acquisition time is much longer

than T1 [42]. In this work, we concentrate on relaxation
due to SE collisions. Other relaxations mechanisms, such
as wall collisions, relaxation due to magnetic gradients, or
power broadening, can also be included in Eq. (1) [22], but
to make evident the SE effects we assume that these are
negligible.

A simple formula relates the dynamics matrix A with
the noise-strength matrix Q and the steady-state covariance
RX̂,X̂(0) [42],

ARX̂,X̂(0) + RX̂,X̂(0)AT = QQT . (8)

We calculate RX̂,X̂(0) in Sec. III.

D. Intrinsic versus thermal spin-noise

In quantum-limited probing of atomic spin systems, in-
trinsic spin-noise, and the effect of measurement on the spin
distribution can play an important role [14,17,43]. Here by
intrinsic we refer to the noise induced by the uncertainty rela-
tion on the interrogated angular momentum components. The
magnitude of these effects can be understood by considering
the spin uncertainty relations

δFiδFj � 1
2 |〈[F̂i, F̂j]〉| = 1

2 |〈iF̂k〉| = 1
2 |〈F̂k〉|, (9)

for mutually orthogonal directions {i, j, k}. For example,
fully polarized spin-F states with 〈F̂z〉 = Nat f have δFxδFy =
Nat f /2, which saturates the uncertainty relation. For such
polarized states, processes that reduce the uncertainty of one
component, e.g., measurement or optical pumping, are re-
quired to introduce noise into other components, to satisfy the
uncertainty relation [35].

Unpolarized and weakly polarized states also obey Eq. (9),
but they satisfy it in a different way. Unpolarized states have
uncertainty products δFiδFj ≈ Nat f ( f + 1)/3, comparable to
those of polarized states. A much smaller fraction of their spin
variance is imposed by the uncertainty relation however; for
unpolarized states, the right-hand side of Eq. (9) is |〈F̂k〉| �
〈F̂ 2

k 〉1/2 ∼ N1/2
at � Nat. The uncertainty relation thus imposes

an additional variance that is negligible when compared to the
thermal variance of the state. For this reason, the collective
angular momentum can be accurately modeled as a classical
stochastic variable. The quantum nature of the spin is nonethe-
less reflected in the structure of the dynamical equations, i.e.,
in Eqs. (1), (2), and (3). We note that, because we are dealing
with unpolarized states, it suffices to describe the thermal
noise contribution. This contribution reflects the thermal state
variance, and thus the spin structure of the atomic state, but
it does not derive from Eq. (9). More extensive discussions of
the effects of measurement backaction on unpolarized states
can be found in [12,44–46].

E. Faraday signal

The dispersive interaction of a linearly polarized weak
probe beam with a hot atomic vapor results in para-
magnetic Faraday rotation [35,47] by an angle φ̂(t ) ≈
(4π2nlν/c)Re[â1(ν, t )], where n is the alkali-metal number
density in the vapor cell of length l , ν is the frequency of
the monochromatic laser beam interacting with the atomic
medium, c is the speed of light, and â1(ν, t ) is the rank-1 ir-
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reducible vector component of the ground-state polarizability
tensor â. In writing the rotation angle, we have considered
a detuning much larger than the hyperfine splitting in the
excited electronic state such that the contribution of the rank-2
component of the polarizability tensor is negligible. Addi-
tionally, we assume that the pressure broadening due to the
interaction of the alkali-metal atoms with the atoms of a buffer
gas is larger than the Doppler broadening of the optical transi-
tion. Under these assumptions, the Faraday rotation takes the
form [12,48]

φ̂(t ) ≈ gbF̂ b
z (t ) − gaF̂ a

z (t ), (10)

with F̂α
z = ∑Nat

i=1 f̂ α
i,z, α ∈ {a, b} being the collective ground-

state angular momentum operator expressed as a uniformly
weighted sum over all the single-atom angular momentum
operators probed by the laser beam. To avoid labeling com-
plexity, we assume that the probe beam covers the entire
vapor cell. The uniform weighting represents a homogeneous
atom-light coupling [49], while the probe beam is assumed to
propagate along the ẑ-direction. Here, a = I + 1/2 and b =
I − 1/2 indicate the upper and lower hyperfine manifolds, re-
spectively, with I being the nuclear spin. In Eq. (10) we ignore
the terms of the Faraday signal that oscillate at the hyperfine
frequency since they significantly exceed the bandwidth of the
usual photodetectors, and they are irrelevant to this work. The
coupling constants gα with α ∈ {a, b} are given by

gα = 1

2I + 1

cre fosc

Aeff

ν − να

(ν − να )2 + (
�ν
2

)2 , (11)

where re = 2.83 × 10−13 cm is the classical electron radius,
fosc is the oscillator strength associated with the particu-
lar optical transition, 2I + 1 is the nuclear spin multiplicity,
Aeff is the effective beam area, �ν is the full width at
half-maximum (FWHM) optical linewidth, and ν − να is the
optical detuning of the linearly polarized probe light from
the electronic manifold of the excited state. Here, να with
α ∈ {a, b} are the optical resonance frequencies of the two
ground-state hyperfine levels. For the magnetic fields of
interest in this paper, the Zeeman splittings are small com-
pared to the detuning from the optical transition, hence they
can be safely neglected in the description of the atom-light
coupling.

In Faraday probing, the optical rotation is usually measured
with a balanced photodetector. The optical signal reaching the
detector can be expressed in the Stokes parameter formalism
using the input-output relations [50–52]

Ŝ (out)
y (t ) ≈ Ŝ (in)

y (t ) + [
gbF̂ b

z (t ) − gaF̂ a
z (t )

]
S (in)

x (t ), (12)

where Ŝx ≡ [n̂ph(x) − n̂ph(y)]/2 is the difference between the
number of photons with linear polarization along the x̂- and
ŷ-directions, and Ŝy ≡ [n̂ph(+45◦) − n̂ph(−45◦)]/2 is the dif-
ference between the photon numbers with linear polarization
along ±45◦, with respect to the x-axis. The input beam is
linearly polarized along x̂, therefore Ŝ (in)

x can be treated as a
classical variable with S (in)

x ≡ 〈�〉/2. Here 〈�〉 is the mean
photon flux where we additionally assume that S (in)

x (t ) =
S (in)

x = 〈�〉/2 is on average constant during the acquisition
process [18]. The applicability of Eq. (12) is limited to small

Faraday rotation angles. For unpolarized or low-polarized va-
pors, the small-angle approximation is satisfied. Finally, due
to the off-resonance probing considered here, the effects of
optical absorption are negligible and therefore not account in
Eq. (12).

III. SPIN CORRELATION FUNCTIONS

A. Steady-state many-body density matrix

As described in Sec. II C, the noise matrix Q can be
computed, given the equal-time covariance matrix RX̂,X̂(0)
and the known dynamical matrix A. Physically, the combined
noise and relaxation in the stochastic Bloch equations must
produce covariances equal to those found in the equilibrium
many-body state ρ̃.

We note that Eqs. (2) and (3) describe the spin evolution
“in the dark,” i.e., without measurement or backaction effects
produced by the probe beam. The relevant equilibrium state is
thus that produced by the following process: unitary evolution
under the Larmor and hyperfine effects, interrupted at random
intervals by sudden spin-exchange collisions between random
pairs of atoms within the ensemble. These collisions cause
mutual precession of the colliding atoms’ electron spins by
a random angle. This process can produce any possible spin
state, and, assuming the random parameters do not themselves
depend on the spin state, it will in time produce each possible
state with equal probability. That is, the equilibrium many-
body state is a fully mixed state, which can be written as the
product state ρ̃eq ≡ ρ

⊗Nat
th , where ρth ≡ 1/d is the single-atom

thermal state, and d = (2a + 1) + (2b + 1) is the dimension
of ρ.

B. Equal-time correlations

Given ρ̃eq as just described and Eq. (7), we compute the
equal-time correlators

RF̂α
i ,F̂β

j
(0) = 1

2

〈
F̂α

i (0)F̂β
j (0) + F̂β

j (0)F̂α
i (0)

〉
= δi jδαβ

f α ( f α + 1)(2 f α + 1)

6(2I + 1)
Nat. (13)

This describes vanishing correlations among different compo-
nents and different hyperfine levels at τ = 0. It is nonetheless
compatible with nonvanishing off-diagonal unequal-time cor-
relations, to be computed in the following section. The
spectral features of the resulting cross-correlations are simi-
lar to what has been shown for heterogeneous spin systems
previously [37,53]. For future reference, we define var(Fα ) ≡
f α ( f α + 1)(2 f α + 1)Nat/[6(2I + 1)] as the variance of the
angular momentum vector in the unpolarized state.

The equal-time correlations described by Eq. (13) are
simple and without structure. For example, there are no equal-
time cross-correlations either between the different hyperfine
components of a single atom or between the spin operators of
different atoms. This does not imply that these components
are truly uncorrelated; rather, it reflects the fact that the phase
of any dynamical behavior involving these components is
random. When averaged over this phase, the equal-time corre-
lations vanish. It is nonetheless possible to observe dynamics
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involving these distinct components: they are visible in the
unequal-time correlations that we now proceed to calculate.

C. Unequal-time correlations

For τ > 0, the τ -derivative of 〈X̂(τ )X̂T (0)〉 is given by

d

dτ
〈X̂(τ )X̂T (0)〉 =

〈
AX̂(τ )dτ + QdŴ(τ )

dτ
X̂T (0)

〉

= A〈X̂(τ )X̂T (0)〉, (14)

where in the second step we used the properties of the
Wiener increment assuming there is no correlation between
dŴ(τ ) and the initial state vector X̂T (0). Consequently, the

τ -dependence of the steady-state covariance matrix is given
by

RX̂,X̂(τ ) =
⎧⎨
⎩

eAτRX̂,X̂(0), τ > 0,

RX̂,X̂(0)e−AT τ , τ < 0.

(15)

This is an important result, indicating that the τ evolution of
the correlation RX̂,X̂(τ ) is governed by the same equation as

the time evolution of the mean 〈X̂(t )〉, cf. Eq. (6). This result
is known in the literature as the regression theorem [42]. Here-
after, we concentrate only on correlations for τ > 0, while
equivalent results can be obtained for τ < 0. In Eq. (15), A
is the 6 × 6 matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

−Rseκaa 0 −ω0 Rseκbb 0 0
0 −Rseκaa 0 0 Rseκbb 0
ω0 0 −Rseκaa 0 0 Rseκbb

Rseκaa 0 0 −Rseκbb 0 ω0

0 Rseκaa 0 0 −Rseκbb 0
0 0 Rseκaa −ω0 0 −Rseκbb

⎞
⎟⎟⎟⎟⎟⎠. (16)

Analytical expressions for the covariance components can
be derived by eigen-decomposing the matrix exponential into
eAτ = Ve�τV −1. The details of the eigenspectrum of A are
presented in Appendix B. In the presence of the magnetic field
along the ŷ-direction, the dynamics are separated into longi-
tudinal (i.e., along the B-field direction) and transverse, with
vanishing correlations between the two. Simple analytical ex-
pressions are obtained for both components. The longitudinal
covariances are given by

RF̂ a
y ,F̂ a

y
(τ ) = var(F a)

κaa + κbb
[κbb + κaae−(κaa+κbb)Rseτ ], (17)

RF̂ b
y ,F̂ b

y
(τ ) = var(F b)

κaa + κbb
[κaa + κbbe−(κaa+κbb)Rseτ ], (18)

RF̂ a
y ,F̂ b

y
(τ ) = var(F b)

κaa + κbb
κbb[1 − e−(κaa+κbb)Rseτ ], (19)

RF̂ b
y ,F̂ a

y
(τ ) = var(F a)

κaa + κbb
κaa[1 − e−(κaa+κbb)Rseτ ]. (20)

We note that κaavar(F a) = κbbvar(F b) and thus RF̂ a
y ,F̂ b

y
(τ ) =

RF̂ b
y ,F̂ a

y
(τ ). The transverse covariance components can be

summarized in a simple formula,

RF̂α
i ,F̂β

j
(τ ) = 2(Re[c1e−(�−+i�− )τ ] + Re[c2e−(�++i�+ )τ ]),

(21)

where the coefficients c1 ≡ c1(Fα
i , Fβ

j ) and c2 ≡ c2(Fα
i , Fβ

j )
are different for each covariance component and are discussed
in Appendix D. For slow spin-exchange (ω0 � Rse), the relax-
ation rates �± entering Eq. (21) are given by �− ≈ κaaRse and
�+ ≈ κbbRse and are of comparable orders of magnitude. Ad-
ditionally, the two modes �± precess at the same frequency, in
opposite directions, and with independent phases; therefore,
they are related through �+ = −�−. These approach ±ω0

when ω0 � Rse, but they can differ significantly from it in the
rapid SE regime (ω0 � Rse) where the precession frequency

is shifted down to

�+ = −�− ≈ 3(2I + 1)

3 + 4I (I + 1)
ω0. (22)

The corresponding relaxation rates are approximately given
by [27]

�+ ≈ (κaa + κbb)Rse, (23)

�− ≈ ω2
0

Rse

2I (I + 1)(2I − 1)(2I + 3)

(4I2 + 4I + 3)
. (24)

In Fig. 1, the real parts of c1 and c2 are plotted against
Rse/ω0, while in Appendix D analytical expressions for the
coefficients are presented for the covariance components
along the ẑ-direction.

At high magnetic fields, the fast spin precession “aver-
ages out” correlations between the two oppositely precessing
states. In contrast, the dynamics in the two hyperfine levels
are interlocked by the rapid SE collisions as the spins precess
slowly in the magnetic field [27], thus enabling unequal-time
cross-correlations to build up. These effects are imprinted on
the behavior of c1(Fα

i , Fβ
j ) and c2(Fα

i , Fβ
j ) as illustrated in

Fig. 1(b). Both coefficients transition from a zero value at
high magnetic fields to an amplitude roughly equal to that
of RF̂ b

z ,F̂ b
z

(τ ), shown in Fig. 1(c). Further, since the absolute
values of the two coefficients are equal, according to Eq. (21),
the relaxation rates �+ and �− contribute equally in the
τ -evolution. In contrast, as seen in Figs. 1(a) and 1(c), the
dynamics of RF̂ a

z ,F̂ a
z

(τ ) and RF̂ b
z ,F̂ b

z
(τ ) are mostly dominated

by a single eigenmode with relaxation rates �− and �+, re-
spectively. As a consequence, the two autocorrelations relax
differently.

Apart from the correlated dynamics, Fig. 1 indicates also
the way spin-noise power is distributed among the two trans-
verse modes appearing in Eq. (21) and subsequently across
the frequency spectrum. This is the case since Re[c1] and
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FIG. 1. Two times the real parts of the coefficients c1(Fα
z , F β

z )
and c2(Fα

z , F β
z ) entering the time evolution of the transverse covari-

ance components (a) RFa
z ,Fa

z
(τ ), (b) RFa

z ,Fb
z

(τ ) and RFb
z ,Fa

z
(τ ), and

(c) RFb
z ,F b

z
(τ ), according to Eq. (21). The single-atom variances in

the two hyperfine multiplets are shown with blue dashed lines. The
plot corresponds to a 87Rb vapor at a magnetic field of B = 10 mG.

Re[c2] directly refer to the spin-noise power associated with
the particular mode. In the SERF regime, it is apparent that
in the upper hyperfine manifold, spin-noise power is mostly

concentrated in a narrow spectral region, in the vicinity of
the precession frequency �− since λ1 = �− + i�− dominates
the correlations. In contrast, the power in the lower manifold
is distributed across a broad range of frequencies around
�+, reflecting the dominance of λ2 = �+ + i�+. Finally,
the cross-correlation power is zero as expected according to
Eq. (13).

An overall demonstration of the discussed effects is il-
lustrated in Fig. 2. Both the time and the frequency domain
of the covariance functions are plotted across the SE-SERF
transition while the magnetic field is kept constant at B = 10
mG. When the SE rate starts to exceed the Larmor frequency,
ω0 ≈ 2π × 7 kHz, an increasing coherence time and a fre-
quency shift are demonstrated for all covariance components.
In Figs. 2(a) and 2(c), the autocovariance functions RF a

z ,F a
z

(τ )
and RF b

z ,F b
z

(τ ) in the upper and the lower hyperfine manifolds,
respectively, are presented together with the corresponding
power spectra. The spectral lines in the lower manifold are
broad due to the large contribution of the fast relaxation rate
�+ = (κaa + κbb)Rse, affecting the wings of the resonance.
In contrast, narrow resonant features with considerable am-
plitudes are obtained for the upper manifold consistent with
Fig. 1(a). Finally, in Fig. 2(b) the cross-correlation dynamics
are illustrated. Details about the spectral features as well as
implications of the peculiar line shapes are discussed in the
following sections.

D. Spin-noise spectra

The power spectral density is the Fourier transform of the
autocovariance function of the detected optical signal [54]

S(ν) =
∫ +∞

−∞
RŜ (out)

y ,Ŝ (out)
y

(τ )e−2π iντ dτ. (25)

Plugging Eq. (12) into Eq. (25) and given that the Stokes
and the angular momentum operators are Hermitian, it is
apparent that three distinct terms contribute to the covari-
ance function of the Faraday signal: (i) a white photon
shot noise originating from Ŝ (in)

y (t ), (ii) the atomic covari-
ance indicating correlations of the atomic signal between
different times, and (iii) the cross-terms corresponding to
correlations between the atomic angular momentum and the
fluctuations of the input light Ŝ (in)

y (t ). The photon shot-
noise autocovariance function for a coherent field is given
by RŜ (in)

y ,Ŝ (in)
y

(τ ) = Re[〈Ŝ (in)
y (τ )Ŝ (in)

y (0)〉] = 〈�〉δ(τ ), where
δ(τ ) is the Dirac delta function. Hereafter, we assume that
polarization fluctuations of the input light are not affecting the
atomic variables and therefore they are not correlated with the
spin-evolution, i.e., the cross-terms are not contributing to the
spin-noise spectrum. For an unpolarized vapor probed by an
off-resonance beam, the backaction effect is negligible [35].
The resulting autocovariance function of the detected optical
signal can therefore be expressed as

RŜ (out)
y ,Ŝ (out)

y
(τ ) ≈ 〈�〉δ(τ ) + 〈�〉2

4

{
g2

aRF̂ a
z ,F̂ a

z
(τ ) + g2

bRF̂ b
z ,F̂ b

z
(τ ) − gagb

[
RF̂ a

z ,F̂ b
z

(τ ) + RF̂ b
z ,F̂ a

z
(τ )

]}
. (26)
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FIG. 2. τ -dependence of the steady-state covariance components probed by a linearly polarized electric field (top row) and the correspond-
ing power spectra (bottom row) for a 87Rb vapor at four different values of the spin-exchange rate: Rse/ω0 = 0.1 (no. 1, purple), 1 (no. 2, blue),
10 (no. 3, yellow), and 100 (no. 4, red). The magnitude of the magnetic field is fixed to B = 10 mG corresponding to a Larmor frequency of
ω0 ≈ 2π × 7.0 kHz and a Larmor period of τL ≈ 0.1 ms. In the time domain, an increasing coherence time for all covariance components when
approaching the SERF regime is illustrated. On top of that, the cross-covariances in (b) reveal an increasing amplitude, indicating strong cross-
correlations between the two hyperfine levels. The power spectra behave accordingly. In (a) and (c) the spectrum is given by a single Lorentzian
centered at the corresponding precession frequency, while the spectrum in (b) is of dispersive form that tends towards a Lorentzian in the SERF
regime. For rapid SE, the Larmor frequency is slowed down to the value |�+| = |�−| ≈ 3(2I + 1)ω0/[3 + 4I (I + 1)] ≈ 2π × 4.7 kHz, and

the linewidth is approximately given by �− ≈ ω2
0

Rse
[2I (I + 1)(2I − 1)(2I + 3)]/(4I2 + 4I + 3), both constituting strong footprints of the SE

interaction on the spin-noise spectrum. The spectral lines in the lower manifold are broader due to the large contribution of the fast relaxation
rate �+ = (κaa + κbb)Rse, affecting the wings of the resonance.

To obtain the power spectrum given by Eqs. (25) and (26),
we calculate the Fourier transform of each of the covariance
components as demonstrated in the previous section,

SX̂,X̂(ω) =
∫ 0

−∞
RX̂,X̂(0)e−AT τ eiωτ dτ

+
∫ +∞

0
eAτRX̂,X̂(0)e−iωτ dτ. (27)

By applying the spectral decomposition eAτ = Ve�τV −1 and
by explicitly calculating the integral

∫ +∞
0 e[�−iω1]τ dτ =

(� − iω1)−1, we obtain

SX̂,X̂(ω) = −V (� − iω1)−1V −1RX̂,X̂(0) + c.c. (28)

The resulting power spectra are real for all covariance com-
ponents with the longitudinal being centered at zero and the
transverse at ±�±. Equation (28) shows the dependence of
the power spectrum on the eigenspectrum � in the presence
of SE collisions, as was first illustrated in [27]. Both �± are
contributing to the broadening of the spectrum, each weighted
according to Fig. 1.

In Fig. 3 we present the atomic power spectrum resulting
from the Fourier transform of the atomic covariance compo-

nents appearing in the expression for the dispersive Faraday
rotation signal, Eq. (26). We note that the spectrum is qual-
itatively in agreement with the spectral features reported in
[12]. It is apparent that the line shape is dominated by the
dynamics in the upper hyperfine multiplet since the amplitude
of RF̂ a

z ,F̂ a
z

(τ ) greatly exceeds the amplitudes of the remaining
components. Although the underlying generation mechanism
of the spectrum is the sum of eight complex Lorentzians
appearing in Eq. (D10), in practice the experimentally relevant
line shape resembles a simple Lorentzian feature centered at
|�±|.

Due to the intriguing behavior of the correlation functions
in the SERF regime, in the next section we show that by appro-
priately choosing the optical detuning of the Faraday probe,
we can control the spectral distribution of spin-noise power
and under certain circumstances obtain significant reduction
as a consequence of the peculiar line shape.

IV. PREDICTED PHENOMENA IN SNS

We now describe specific observable phenomena predicted
by the theory described in the preceding sections.

023112-7



K. MOULOUDAKIS et al. PHYSICAL REVIEW A 106, 023112 (2022)

0 10 20 30 40 50
0

1

2

3

10 mG 20 mG 40 mG 60 mG

1

2

3 4

1 2 3 4

FIG. 3. Atomic spin-noise power spectrum for a pure 87Rb va-
por as a function of the magnetic field. The spectrum is calculated
at a temperature of T = 200 ◦C corresponding to an alkali-metal
number density of nRb = 9.2 × 1014 cm−3 and consequently to a
spin-exchange rate of Rse ≈ 2π × 134 kHz. The chosen detuning
is 50 GHz blue detuned from the D1 transition, and the pressure
broadening �ν = 10 GHz.

A. Probe detuning dependence

Besides cn(Fα
i , Fβ

j ) in Fig. 1, which shape the spectrum
and distribute the noise power for a given ratio of the alkali-
metal number density and the magnetic field, an equally
significant weighting parameter is the optical detuning of
the probe. In Fig. 4 we plot the coupling constants entering
Eq. (26) as a function of the frequency of the probe for a 87Rb
vapor at low buffer gas pressure, corresponding to an optical
broadening of �ν = 1 GHz. Due to the unique behavior of
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FIG. 4. Coupling constants g2
a, g2

b, and −gagb appearing in
Eq. (26) as a function of the optical detuning from the D1 transi-
tion of 87Rb. The spectrum corresponds to an optical linewidth of
�ν = 1 GHz, and the line shapes are normalized to the maximum
value of g2

a.

each covariance component, by suitably choosing the detun-
ing, both the line shape and the spectral distribution of the
spin-noise power can be modified. It is worth noting that in
this near-resonant regime optical attenuation of the signal will
be important, especially at high vapor densities.

In SERF, as a consequence of the strong cross-correlations
between the two hyperfine levels, untypical spin-noise spectra
are obtained. For instance, by choosing a red detuning at
the wing of the lower hyperfine resonance, we eliminate the
contribution of the strong covariance component in the upper
hyperfine manifold and consequently the line shape is domi-
nated only by cross-covariances and covariances in the lower
manifold [55]. According to Fig. 1, both of the preceding
components have comparable amplitudes, and hence, as seen
in Fig. 4, by appropriately choosing the detuning we can make
their contribution in the Faraday signal equally significant.

B. Partial cancellation of spin-noise at the precession frequency

In addition, the opposite sign between the coupling con-
stants g2

b and −gagb leads to unusual spectral features as
illustrated in Fig. 5. Resonant dips can be observed at the
spin-precession frequency as indicated in Figs. 5(b) and 5(c).
In this case, the spectrum resembles a band-rejection filter
centered at the precession frequency with a spectral distri-
bution such that spin-noise power is reduced on resonance.
The spectrum is an effect of the coherent cross-correlations
that are subtracted from the λ2-dominated spectrum in the
lower manifold. Finally, we note that in the same regime, fine
adjustment of the detuning across the red, near-wing of the
lower hyperfine resonance results in modified spectra such
as those, for instance, in Fig. 5(a), which are significantly
different from the Lorentzian line shape usually encountered
in SNS experiments.

C. Variable integrated spin-noise power

In many experimental scenarios, the spin-noise power
of the thermal state is obtained either from the variance
of the time-averaged signal in a sample time �t , ¯̂Fα

i (t ) =
1
�t

∫ t+�t
t F̂α

i (t ′)dt ′, after averaging many repetitions [14,56],
or by fitting or numerically integrating the steady-state spec-
trum [12,32,57,58]. In a time interval [t, t + �t], each term in
Eq. (26) contributes to the total power of the detected Faraday
signal. The spin-noise power in that time window is intimately
related to the atomic covariance through

PF̂α
z ,F̂β

z
= 1

�t2

∫ �t

0
τdτ

[ − RF̂α
z ,F̂β

z
(−τ ) − RF̂α

z ,F̂β
z

(τ )
]

+ 1

�t

∫ �t

−�t
dτ RF̂α

z ,F̂β
z

(τ ). (29)

The derivation of the preceding equation is presented in Ap-
pendix C. In the frequency domain, the power is obtained by
realizing the fact that the correlation function is the Fourier
transform of the power spectrum. From Eq. (29) we find

PF̂α
z ,F̂β

z
= 1

2π

∫ ∞

−∞
dωSF̂α

z ,F̂β
z

(ω)

[
sinc

(
ω�t

2

)]2

, (30)
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FIG. 5. Spin-noise spectrum of 87Rb for various detunings.
(a) The probe laser frequency is tuned to ν = −5.7 GHz from
the D1 electronic transition; (b) and (c) the laser frequency is ν =
−6.2 GHz. The optical linewidth is �ν = 1 GHz. The temperature
is T = 200 ◦C corresponding to a number density of nRb = 9.2 ×
10−14 cm−3 and to a spin-exchange rate of Rse ≈ 2π × 134 kHz.
In (c) we extend the plot of (b) to higher frequencies. The dashed
lines correspond to the precession frequencies |�±| for each applied
magnetic field.

where sinc(x) = sin (x)/x. As �t → 0, from Eq. (30) we
obtain

PF̂α
z ,F̂β

z
= 1

2π

∫ ∞

−∞
dωSF̂α

z ,F̂β
z

(ω)

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
dωRF̂α

z ,F̂β
z

(τ )eiωτ dτ

= RF̂α
z ,F̂β

z
(0), (31)

where in the last step we used the property of the Dirac delta
function δ(τ − α) = 1

2π

∫ +∞
−∞ dω eiω(τ−α). Using the steady-

state covariance at τ = 0, the total power of the polarimeter
output is expressed as

RŜ (out)
y ,Ŝ (out)

y
(0) = PSN + 〈�〉2

4

[
g2

avar(F a) + g2
bvar(F b)

]
,

(32)

being in agreement with [43,59]. Here PSN is the total photon
shot-noise power. As is evident in Eq. (32), although the
cross-correlations are not contributing to the total spin-noise
power, it is possible experimentally to measure a nonzero
contribution due to the limited bandwidth of the acquisition
process, defined as BW = 1/(2�t ). As can be seen in the
spectrum of Fig. 2(b), when in the SERF regime, the cross-
correlation power, given by the integral under the spectral line
shape, is equally distributed between the resonant peak and
the negative far wing that extends to the high-frequency part
of the spectrum. Due to the limited bandwidth, frequencies
higher than the Nyquist frequency are not entering the signal,
thus resulting in a nonzero and positive cross-power. This
means that according to Eqs. (30) and (26), the amount of the
remaining nonzero cross-correlation power will be subtracted
from the total power of the Faraday signal, resulting in a
reduced spin-noise power as opposed to the expected one,
given by Eq. (32).

Apart from the nonzero cross-correlation power, we predict
an additional and similar mechanism, realized in experimental
implementations of SNS, that leads to further reduction of
the noise power compared to the level expected from the
thermal spin state. In the SERF regime, because of the fast
decay �+ that enters both of the autocorrelation functions,
the corresponding spectra extend to high frequencies and are
therefore constrained by the acquisition. Consequently, the
integrated spectrum in Eq. (30) contains only a portion of the
presumed noise power of the thermal spin state.

To further illustrate these features, in Fig. 6 we plot the
spin-noise power as a function of the detuning for three differ-
ent bandwidths. The power is obtained in two different ways:
either by integrating the spectrum up to the frequency defined
by BW, or by directly applying Eq. (30). In both cases, the
power has been normalized against the total power in the
whole frequency range, given by Eq. (32). It is apparent that
both methods produce similar results. Interestingly, for a 87Rb
vapor at realistic conditions, e.g., a cell temperature of T =
200 ◦C, a magnetic field of B = 10 mG, a pressure broadening
of �ν = 10 GHz. and a measurement bandwidth of 200 kHz.
we obtain a spin-noise power at the far-wings of the optical
transition that is approximately 20% smaller than the noise
of the thermal state. Apparently, for even smaller acquisition
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FIG. 6. Integrated spin-noise power as a function of the detuning.
The spectrum is integrated up to three different bandwidths, 1 MHz
(no. 1, red), 200 kHz (no. 2, purple) and 80 kHz (no. 3, green). The
bandwidth is related to the sampling time through BW = 1/(2�t ).
The solid lines correspond to direct integration of the power spectrum
up to the bandwidth frequency, whereas the dashed lines correspond
to the noise given by Eq. (30). The spectrum corresponds to a
87Rb vapor at a temperature of T = 200 ◦C and a magnetic field of
B = 10 mG. The optical linewidth is �ν = 10 GHz. The response is
normalized to the total atomic noise g2

avar(F a ) + g2
bvar(F b) obtained

when integrating the spectrum in the whole frequency range.

bandwidths, it can exceed 40%. In the limit where the band-
width extends to infinity, we obtain g2

avar(F a) + g2
bvar(F b).

The same results are also obtained when the noise-power is
extracted from the time domain signal since there is a direct
relation between Eqs. (29) and (30).

Lastly, we emphasize that fitting the spectrum with a sin-
gle Lorentzian leads to a considerable underestimation of
the spin-noise power, given by the integrated area under the
Lorentzian curve. This is illustrated in Fig. 7 where both of
the spectra in the two hyperfine states are fitted by simple
Lorentzian functions, depicted by the green filled areas (no.
1). We find that in the upper manifold the fit captures 83%
of the total power, whereas in the lower manifold only 16%
is captured. This is expected since the first is dominated by
the slow and the latter by the fast relaxation, as demonstrated
in Figs. 7(a) and 7(b). In the SERF regime, the coupling
between the two hyperfine multiplets is roughly character-
ized by �− = (κaa + κbb)Rse [36], therefore it takes at least
1/�− amount of time for the two manifolds to be corre-
lated. This is reflected in the rapid jumps of the correlation
functions close to τ = 0. After that time interval, because
of the strong interlock of the two states, the resulting corre-
lations have long coherence times with amplitudes given in
Fig. 1.

D. Observations

The new features are the result of strong correlations be-
tween the two hyperfine manifolds in the SERF regime. These
correlations result from the rapid transfer of angular momen-

tum between the two hyperfine populations, and they cause
the two states to precess in an interlocked way.

The effects are most visible when the probe frequency
is tuned to the wings of the lower hyperfine level. Stronger
effects are expected for low buffer gas pressures, for which
the optical transitions from the ground-state hyperfine levels
are better resolved.

For the sake of simplicity, we have not included spin-
destruction collisions, power broadening, or diffusion in the
spin dynamics model. The first two of these can be included
quite simply in the Bloch equations. Diffusion can also be in-
cluded, using a mode expansion [15], at the cost of increasing
the dimensionality of the model.

As just noted, the most dramatic effects occur at low buffer
gas pressure, and thus in conditions for which spin destruc-
tion collisions play a minor role. Similarly, diffusion and
power broadening can be made negligible by working with
a large probe beam size [54]. For these reasons, we believe
the effects predicted here should be observable in appropriate
conditions, and that other conditions can also be mod-
eled through straightforward adaptation of the theory given
here.

To the best of our knowledge, there is no simple model
(simpler than the coupled hyperfine Bloch equations we
utilize here) that can accurately describe the atomic noise
properties in the SERF regime or in the transition between the
SERF and SE regimes. Here and in the abstract, by “simple
model” we refer to a Bloch equation describing a single spin
(or collective spin) observable, e.g.,

dS
dt

= 1

q(P)
(γeS × B) − �relS +

√
2�relσdW, (33)

where S = (Sx, Sy, Sz ) is the electron spin, γe = gsμB/h̄ is
the gyromagnetic ratio of the electron, q(P) is the nuclear
slowing-down factor that depends on the spin-polarization,
�rel is the spin relaxation rate, σ is the equilibrium vari-
ance (spin-projection noise), and dW = (dWx, dWy, dWz ) is
a vector with independent temporal Wiener increments. Such
models have been frequently used in spin-noise spectroscopy
with unpolarized vapors. Assuming that the spin relaxation
is only related to spin-exchange collisions, there is a regime
where the simple Bloch model is approximately valid. This
regime is at large magnetic fields, such that the Larmor fre-
quency is much larger than the spin-exchange rate Rse. In this
scenario, the relaxation rates �± that appear in Eq. (21) are
nearly equal, each being roughly equal to Rse, and therefore
the power spectrum can be well approximated by a single
Lorentzian with an effective relaxation rate and with the
atomic spin-noise power concentrated at the spin-precession
frequency. This conclusion holds for all detunings and buffer
gas pressures. Additionally, at high magnetic fields, spin-
correlations between the two hyperfine levels are negligible
and the dynamics of the two manifolds can be considered
independently. The above assumptions motivate the use of a
simple Bloch model in this large field regime. The simple
model fails in the SERF regime, because of the fast relax-
ation rate �+ that causes the atomic noise to be distributed
to a broad range of frequencies, and also because “broad-
band” atomic noise is transferred to the cross-correlation
spectrum between the two hyperfine manifolds. In that case,

023112-10



EFFECTS OF SPIN-EXCHANGE COLLISIONS ON THE … PHYSICAL REVIEW A 106, 023112 (2022)

Theory
Lorentzian Fit

Theory

0 50 100 150 200
10- 8

10- 6

10- 4

10- 2
Lorentzian Fit

(a) (b)

(c) (d)

0 5 10 15 20
- 1.0

- 0.5

0.0

0.5

1.0

0 5 10 15 20
- 0.05

0.00
0.05
0.10
0.15
0.20
0.25

0 50 100 150 200

10- 6

10- 4

0.01

1

1

2

2

1

1

2

2

1

FIG. 7. τ -evolution of (a) RF̂ a
z ,F̂ a

z
(τ ) and (b) RF̂ b

z ,F̂ b
z

(τ ) with the corresponding power spectra presented in (c) and (d). The green filled

areas (no. 1) represent a Lorentzian fit to the power spectrum of the form γ /[(ν − ν0 )2 + γ 2]. The spectrum corresponds to a 87Rb vapor at a
magnetic field of B = 10 mG and a spin-exchange rate 100 times larger than the Larmor frequency.

as we demonstrate in Fig. 7, a simple model with a sim-
ple Lorentzian spectrum does not accurately describe the
spin-noise spectrum and the spin-noise power. Because of
the broadband atomic noise components, the measurement
bandwidth becomes important when calculating the integrated
noise power in the SERF regime. In this regime, a more
complete description, such as the one we have developed here,
is required.

V. CONCLUSIONS

We have derived analytic expressions for the spin-noise
correlations and spin-noise spectra of hot alkali-metal vapors,
taking into account hyperfine, Zeeman, and spin-exchange
interactions, and also accounting for the effects of probe de-
tuning relative to the different atomic hyperfine transitions.
The results are applicable both in and out of the SERF regime,
and they show several interesting spectral behaviors not seen
in phenomenological models.

The observation that spin-noise can be reduced at the Lar-
mor frequency by proper choice of detuning is particularly
intriguing for magnetic sensing and extensions such as mag-
netic gradiometry and comagnetometry.
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APPENDIX A: SPIN DYNAMICS

The relaxation of the angular momentum in the ground
state of the alkali-metal atoms due to spin-exchange collisions
in a constant magnetic field is described by the nonlinear
differential equation for the density matrix, Eq. (1). Defin-
ing the single-atom projector operators in the upper and
lower hyperfine manifolds as P̂α = ∑

m |αm〉〈αm| with α ∈
{a, b}, the density matrix can be decomposed as ρ = 1ρ1 =∑

α P̂αρP̂α ≈ P̂aρP̂a + P̂bρP̂b ≡ ρa + ρb. In arriving at the
last step, we have ignored hyperfine coherences since they
exceed by far the bandwidth of interest in this work.

In the low-polarization limit, the equation can be con-
siderably simplified, allowing one to write the evolution
of 〈F̂a〉 = Tr[ρ̃F̂a] and 〈F̂b〉 = Tr[ρ̃F̂b] into a system of
first-order coupled differential equations as demonstrated
in Eqs. (2) and (3). This is realized by expanding the
single atom density matrix ρ in the spherical tensor oper-
ator basis ρ = ∑

LM f f ′
ρ

LM f f ′ T
L
M ( f f ′) = ∑

�μlm ρ
�μlm T�

μ (II ) ⊗
Tl

m(ss) either in the coupled or in the uncoupled basis, spanned
by the angular momentum states {| f m〉} and {|sms〉 ⊗ |ImI 〉},
respectively. Here TL

M ( f f ′) are the irreducible spherical tensor
operators defined as [47]

TL
M ( f f ′) =

∑
m

(−1)m−M− f ′ | f m〉〈 f ′m − M|

× C( f f ′L; m, M − m), (A1)

where f , f ′ ∈ {a, b} are the two ground-state hyperfine states,
and C( f f ′L; m, M − m) denotes the Clebsch-Gordan coeffi-
cient. For the coefficients καβ with α, β ∈ {a, b} appearing in
Eqs. (2) and (3), one obtains

κaa = 1 − X1(aa)2 − Y1(aa)2,

κab = r[X1(aa)X1(bb) + Y1(aa)Y1(bb)],

κba = 1

r
[X1(aa)X1(bb) + Y1(aa)Y1(bb)],

κbb = 1 − X1(bb)2 − Y1(bb)2, (A2)

where r = √
a(a + 1)(2a + 1)/[b(b + 1)(2b + 1)]. The co-

efficients X1(aa), X1(bb), Y1(aa), and Y1(bb) are frequently
encountered in the theory of SE in alkali-metal atoms when
moving between the uncoupled and the coupled spherical

tensor operator bases, and they are given by the expressions
[34]

XL( f f ′) = (−1)−( f ′+s+L+I )

(
[ f ][ f ′]

[s]

)1/2{
f ′ s I
I L f

}
,

(A3)

YL( f f ′) = (−1)−(I+ f +s+L)

(
[ f ][ f ′]

[I]

)1/2{
I f s
L s f ′

}
.

(A4)

To avoid redundancy here, we have reproduced the key re-
sults of [36] that will be utilized throughout the paper. The
derivation of these formulas stems directly from Happer-
Tam’s seminal paper [27], and it has been recently analyzed
in [36,37]. In terms of the nuclear spin, the coefficients καβ

take the form

κaa = 2

3

I (2I − 1)

(2I + 1)2
,

κbb = 2

3

(2I + 3)(I + 1)

(2I + 1)2
,

κab = r
2

3

[I (I + 1)(2I − 1)(2I + 3)]1/2

(2I + 1)2
,

κba = 1

r

2

3

[I (I + 1)(2I − 1)(2I + 3)]1/2

(2I + 1)2
. (A5)

We note that κab = r
√

κaaκbb, κba = √
κaaκbb/r, and r =√

κbb/κaa, therefore we conclude that κab = κbb and κba = κaa.

APPENDIX B: EIGENVALUES

Out of the six eigenvalues of A, two are real [λ5 = 0, λ6 =
−(κaa + κbb)Rse] and associated with the longitudinal angu-
lar momentum components, whereas the remaining four are
complex and related to the transverse components. The lat-
ter can be compactly written in a simple formula. Defining
κ+ ≡ κaa + κbb and κ− ≡ κaa − κbb, we obtain

λ = −
[

1
2κ+Rse ± 1

2

√
(κ+Rse )2 ± 4iκ−Rseω0 − 4ω2

0

]
. (B1)

The real part gives the relaxation rate of the transverse spin
components, while the imaginary part gives the precession
frequency in the magnetic field. The quantity under the square
root is a complex number of the form zr = xr + iyr , with
xr = (κ+Rse )2 − 4ω2

0 and yr = ±4κ−Rseω0. The square-root
function is also a complex number that can be expanded in
terms of the real and imaginary parts as

X + iY =
√

xr + iyr

=
√√

x2
r + y2

r + xr + i sgn[yr]

√√
x2

r + y2
r − xr .

(B2)

In this way, the real and imaginary parts of the eigenvalues
are separated, and consequently one obtains λ1 = −(�− +
i�−), λ2 = −(�+ + i�+), λ3 = λ∗

1 = −(�− − i�−), and
λ4 = λ∗

2 = −(�+ − i�+). Here we have defined �± ≡
(κ+Rse ± X )/2 and �± ≡ ±Y/2 as the relaxation rates and
precession frequencies in the low-polarization limit when both
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the spin-exchange rate Rse and the Larmor frequency ω0 are
much slower than the hyperfine rate.

Furthermore, it should be noted that the complex eigenval-
ues can be expressed in terms of the nuclear spin multiplicity
[I] ≡ 2I + 1 as

λ = −
[

[I]2 + 2

3[I]2
Rse

±
√(

([I]2 + 2)

3[I]2

)2

R2
se ± 2iRseω0

[I]
− ω2

0

]
, (B3)

in agreement with Eq. (99) of [27]. Analytical expressions for
�± and �± have also been presented in the same paper both in
the rapid (ω0 � Rse) and in the slow (ω0 � Rse) SE regimes.

The relaxation rate and the precession frequency of the
magnetic resonance spectrum depend also on the spin-
polarization. At high atomic polarization P ≈ 1, due to optical
pumping, most of the atoms have populated a stretched state
with m = ± f , and SE collisions are insignificant there [22].
This is the case since all the atoms have the same spin projec-
tion, and the exchange interaction is symmetric in that case.
Consequently, the gyromagnetic ratio does not depend on the
ratio between Rse and ω0 and therefore the precession fre-
quency is defined considering only the Hamiltonian dynamics,

i.e., γ = γ0 = gsμB/h̄(2I + 1). However, for intermediate or
low spin-polarization, the gyromagnetic ratio becomes gener-
ally smaller as the SERF regime is approached. The value of
γ in SERF scales with polarization in a polynomial fashion,
and the higher the spin-polarization is, the closer to γ0 is the
gyromagnetic ratio. For instance, the gyromagnetic ratio of
a 87Rb vapor scales with polarization as γ ≈ γe/q(P), where
q(P) = (6 + 2P2)/(1 + P2) is the so-called nuclear slowing
down factor [33]. In the lowest polarization limit where the
magnetic sublevels are equally populated, the slowing down
factor becomes equal to the ratio of the electron gyromag-
netic ratio to the atomic gyromagnetic ratio [s(s + 1) + I (I +
1)]/s(s + 1).

APPENDIX C: MEASUREMENT BANDWIDTH

Assuming that we sample the stochastic atomic signal with
a time step �t , then the bandwidth of the sampling process is
BW = 1/(2�t ). In a time-interval [t, t + �t] we measure the
time-averaged signal

¯̂Fα
i (t ) = 1

�t

∫ t+�t

t
F̂α

i (t ′)dt ′. (C1)

Then, the average covariance of the acquired signal in this
time interval is given by

R̄Fα
i ,Fβ

j
= 1

�t2
Re

[∫ t+�t

t

∫ t+�t

t

〈
F̂α

i (t ′)F̂β
j (t ′′)

〉
dt ′dt ′′

]
= 1

�t2
Re

[∫ t+�t

t

∫ t+�t

t

〈
F̂α

i (t ′ − t ′′)F̂β
j (0)

〉
dt ′dt ′′

]
(C2)

= 1

�t2
Re

[∫ t+�t

t
dt ′

[∫ t ′

t
dt ′′〈F̂α

i (t ′ − t ′′)F̂β
j (0)

〉 + ∫ t+�t

t ′
dt ′′〈F̂α

i (t ′ − t ′′)F̂β
j (0)

〉]]
. (C3)

The above integral can be expressed in terms of the correlation function RFα
i ,Fβ

j
(τ ) through changing the variables of integration

from (t ′, t ′′) to (τ = t ′ − t ′′, s = t ′′). The change of variables leads to a modification in the integral limits, and consequently we
find

R̄Fα
i ,Fβ

j
= 1

�t2
Re

[∫ t+�t

t

∫ t+�t

t

〈
F̂α

i (t ′ − t ′′)F̂β
j (0)

〉
dt ′dt ′′

]
= 1

�t2
Re

[∫∫ 〈
F̂α

i (τ )F̂β
j (0)

〉
dτds

]
(C4)

= 1

�t2
Re

{∫ 0

−�t
dτ

∫ t+�t

t−τ

ds
〈
F̂α

i (τ )F̂β
j (0)

〉 + ∫ �t

0
dτ

∫ t+�t−τ

t
ds

〈
F̂α

i (τ )F̂β
j (0)

〉}
(C5)

= 1

�t2
Re

{∫ 0

−�t
dτRFα

i ,Fβ
j

(τ )[�t + τ ] +
∫ �t

0
dτRFα

i ,Fβ
j

(τ )[�t − τ ]

}
. (C6)

APPENDIX D: τ-DEPENDENCE
OF THE STEADY-STATE COVARIANCE

As described in Sec. III C, analytical expressions for
the unequal-time correlations can be obtained by applying
the exponential decomposition eAτ = Ve�τV −1. By explicitly
performing the matrix multiplications, we find that each co-
variance component can be written as a weighted sum of all
the exponentiated eigenvalues of A as

RF̂α
i ,F̂β

j
(τ ) =

{∑
n cn

(
Fα

i , Fβ
j

)
eλnτ , τ > 0,∑

n qn
(
Fα

i , Fβ
j

)
e−λnτ , τ < 0.

(D1)

The coefficients cn(Fα
i , Fβ

j ) and qn(Fα
i , Fβ

j ) are the result of
the previously discussed matrix multiplications. Evidently, in
the dynamics of the longitudinal components, the coefficients
weighting the eigenvalues associated with the transverse spin
components are zero and vice versa. This observation is
complemented by the fact that there are zero correlations
between the longitudinal and transverse spin components. For
example, in Eqs. (17)–(20) it is apparent that only λ5 = 0
and λ6 = −(κaa + κbb)Rse contribute in the τ -dependence.
Moreover, taking into account emerging conjugation relations,
e.g., c3(Fα

i , Fβ
j ) = c∗

1(Fα
i , Fβ

j ) and c4(Fα
i , Fβ

j ) = c∗
2(Fα

i , Fβ
j )

associated with the conjugation relation of the eigenvalues
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λ3 = λ∗
1 and λ4 = λ∗

2, we arrive at Eq. (21), where only eigen-
values associated with the transverse spin components have a
nonzero contribution.

We recall from Appendix B that κ− ≡ (κaa − κbb)Rse, and
X and Y are the real and imaginary parts of the square root
entering in the expressions for the eigenvalues. Then, the
coefficients of the τ -evolution of the steady-state covariance
matrix elements entering in the expression for the Faraday
signal are given by

c1
(
F a

z , F a
z

) = 1

4
var(F a)

[
1 − κ−Rse + 2iω0

X + iY

]
, (D2)

c2
(
F a

z , F a
z

) = 1

4
var(F a)

[
1 + κ−Rse + 2iω0

X + iY

]
, (D3)

c1
(
F a

z , F b
z

) = 1

2
var(F b)

κbbRse

X + iY
, (D4)

c2
(
F a

z , F b
z

) = −1

2
var(F b)

κbbRse

X + iY
, (D5)

c1
(
F b

z , F a
z

) = 1

2
var(F a)

κaaRse

X + iY
, (D6)

c2
(
F b

z , F a
z

) = −1

2
var(F a)

κaaRse

X + iY
, (D7)

c1
(
F b

z , F b
z

) = 1

4
var(F b)

[
1 + κ−Rse + 2iω0

X + iY

]
, (D8)

c2
(
F b

z , F b
z

) = 1

4
var(F b)

[
1 − κ−Rse + 2iω0

X + iY

]
. (D9)

We note that κaavar(F a) = κbbvar(F b) so that the off-diagonal
coefficients are equal. Similar expressions can be obtained for
the rest of the covariance matrix elements not discussed in
this paper, but also for the conjugate coefficients qn(Fα

i , Fβ
j )

obtained by decomposing the second branch of Eq. (15). At

zero magnetic field we find X → κ+Rse and Y → 0, therefore
the coefficients are significantly simplified.

As a side note, we point out that we can express the power
spectrum in terms of cn(Fα

i , Fβ
j ) and qn(Fα

i , Fβ
j ). Plugging

Eq. (D1) into Eq. (27) and performing the integration over
τ , we find that the matrix elements of the power spectrum
regarding the atomic signal result in

Sα,β
i, j (ω) =

∑
n

qn
(
Fα

i , Fβ
j

)
−λn − iω

+ cn
(
Fα

i , Fβ
j

)
−λn + iω

. (D10)

Finally, we demonstrate a different representation of the
correlation function which is frequently encountered in SNS,
especially when simplified Bloch models are utilized. Even-
tually, we can bring Eq. (21) in a more familiar form by
noticing that ±[a cos(x) + b sin(x)] = ±h cos(x − θ ), where
h = √

a2 + b2 and tan(θ ) = b/a. Applying the preceding
identity, we obtain for τ > 0,

RFα
i ,Fβ

j
(τ ) =

∑
q=±

sgn(Re[cq])|cq|e−�qτ cos (�qτ − θq),

(D11)

with θ± = tan−1(Im[c±]/Re[c±]). Here we have made the
following replacements to the coefficients 2c1 → c− and
2c2 → c+.

The amplitudes |c±| and the phases θ± depend on the ratio
Rse/ω0. Both amplitudes |c±| add up to produce the total am-
plitude of the oscillating covariance. In addition, the transition
from the slow SE regime to SERF is marked by a change of 2π

in the phase of the autocorrelations RF a
z ,F a

z
(τ ) and RF b

z ,F b
z

(τ )
and a change of π in the cross-correlations RF a

z ,F b
z

(τ ) and
RF b

z ,F a
z

(τ ). Finally, we note that the time evolution of the
covariance components is identical for τ < 0, however the
amplitudes |cq| and the phases θq will generally differ from
those at τ > 0.
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