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ABSTRACT

We present a falling-sphere viscometer with a magnetized sphere and fluxgate magnetometers continuously measuring the magnetic field
produced at the sensor positions by the falling sphere. With a fluid volume of 15 ml and within a few seconds, we directly measure dynamic
viscosities in a range between 200 and 3000 cP with a precision of 3%.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160731

I. INTRODUCTION

The measurement of the viscosity of (Newtonian) fluids finds
applications in several industries, such as the pharmaceutical,1,2

food,3,4 cosmetic,5 and lubricant industries.6,7 Based on their oper-
ating principles, viscometers can be roughly divided into (i)
mechanical, (ii) microfluidic, and (iii) electromagnetic. Early
mechanical viscometers still in use are capillary viscometers,8–10

where viscosity is measured by timing the fluid flow through a
narrow capillary. Another type of mechanical viscometer measures
the torque required to rotate a body (e.g., a disk or a cylinder) inside
the fluid.11–16 Yet another mechanical viscometer is the falling-sphere
viscometer, where the viscosity is found by measuring the terminal
velocity of a sphere falling through the fluid under gravity, friction,
and buoyancy.17–25 Modern microfluidic technology has led to
compact devices requiring a small fluid sample volume.26–31 Finally,
what we term electromagnetic viscometers are devices using some
electromagnetic effect coupled to viscous flow.32–34 For example, a fer-
rofluid viscometer35 measures the relaxation of a magnetized ferrofluid
in the sample under consideration.

We here introduce a falling-sphere viscometer with a
“magnetic twist.” We use a magnetized sphere and fluxgate
magnetometers continuously reading the changing magnetic field
produced by the falling sphere at the position of the sensors.
By fitting the fluxgate signals to a theoretical form, we can extract
the fluid’s viscosity with a precision of 3%. Our viscometer is
rather compact (volume occupied by sensors and the sample is
about 5� 5� 10 cm3), the measurement time is a few seconds,
and the required fluid volume is less than 15 ml. It is worth noting

that we directly access the dynamic viscosity of the fluid. In con-
trast, conventional falling-sphere viscometers measure the sphere’s
terminal velocity, which depends both on the dynamic viscosity
and on the fluid’s mass density. Compared to other falling-sphere
viscometers, our viscometer is similar to the optical designs using a
camera to monitor the sphere’s fall,19–22 in that they both use some
physical means (optical vs magnetic) to track the falling ball. While
optical viscometers require transparent fluids, such optical designs
report a higher accuracy than the one arrived in this work at an
expense of a more elaborate apparatus. One further difference
could be cost; however, a direct comparison is not meaningful as
the technology and cost of cameras vs fluxgate sensors is changing
rapidly.

In Sec. II, we provide a theoretical description of the experi-
ment presented in Sec. III. In Sec. IV, we analyze the measurement
results and errors, while in Sec. V, we elaborate on several possible
sources of measurement uncertainty. In the conclusions of Sec. VI, we
discuss some possibilities for further developing this methodology.

II. THEORETICAL DESCRIPTION

Consider a sphere of mass m, radius r, and mass density
ρs ¼ m= 4

3 πr
3, moving in a fluid of dynamic viscosity η. The con-

ventional falling-sphere viscometer measures the sphere’s terminal
velocity in the fluid, v1, under the action of (i) the gravitational
force Fg ¼ mg, (ii) the Stokes frictional force FS ¼ 6πrηv, and
(iii) the buoyant force Fb ¼ 4

3 πr
3ρf g, where ρf is the fluid’s mass

density.
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Once the falling sphere reaches the terminal velocity under a
force equilibrium, it will be Fg ¼ FS þ Fb, from which the equation
follows that η ¼ 2r2g(ρs � ρf )=9v1. The terminal velocity is mea-
sured by timing the sphere as it traverses a known distance. Given
the fluid’s density, the viscosity can be found.

The viscometer presented here does not rely on the measure-
ment of v1, but on the whole trajectory of the sphere from the top
of the fluid column to its bottom, described by the sphere’s height as
a function of time, z(t). Initially, a neodymium sphere36 is held at
rest by a current-carrying coil, just above the fluid column’s top
surface at height z ¼ H, as shown in Fig. 1(a). When the current is
switched off at t ¼ 0, the sphere commences its fall within the fluid.
The coordinate system, as shown in Fig. 1(a), has the coordinate
center at the bottom and center of the cylindrical fluid column.

The height of the sphere can be found by solving the equation
of motion m€z ¼ �mg � 6πrη _z þ Fb, with Fb as given before. The
initial conditions are z(0) ¼ H and _z(0) ¼ 0. Defining the time
constant τ ; 2ρsr

2=9η, it follows that

z(t) ¼ H þ g 1� ρf
ρs

� �
τ2 1� t

τ
� e�t=τ

� �
: (1)

The time constant τ quantifies the time it takes for the sphere to
reach terminal velocity, i.e., when the exponential term in Eq. (1)
has become negligible. We stress that our measurement does not rely
on the sphere reaching a terminal velocity; i.e., when analyzing data
with the theoretical model, we use the exact expression of Eq. (1).

From Eq. (1), it is seen why we can directly access the
dynamic viscosity η, or, equivalently, the time constant τ, from the
measured signal. This is because the sphere’s trajectory z(t), which
underlies the magnetometers’ signal as detailed next, has a depen-
dence on the parameter τ different from the dependence on the

fluid’s density ρf . By inspecting Eq. (1), one might think that this
different dependence is due to the exponential term e�t=τ .
However, actually, this different dependence remains even after
reaching terminal velocity. Indeed, when the exponential e�t=τ in
Eq. (1) becomes negligible, the sphere’s height as a function of time
will read z1(t) ¼ H þ g(1� ρf =ρs)τ

2(1� t=τ). In this expression,
ρf and τ are still decoupled when using many data points at differ-
ent times t. In contrast, conventional falling-sphere viscometers
measure one number, the terminal velocity. By taking the time
derivative of z1(t), it is seen again that such viscometers are sensi-

tive to j _z1j ¼ g
�
1� ρf

ρs

�
τ. Thus, ρf and τ cannot be individually

found from the measurement of this product.

A. Measurable viscosity range

The SI unit of viscosity is 1Ns=m2 ¼ 1000 cP. For example,
the viscosity of engine oil at room temperature is about 500 cP.
Given the sphere’s density ρs � 7:47 g=cm3, it follows that the cor-
responding value of the parameter τ is 4 ms. The sphere’s density
was estimated from the mass and radius data given by the manu-
facturer for much larger spheres of the same material, in order to
minimize the relative error of the estimate.37

To find the range of values of τ measurable with our method-
ology, we first note that, as is evident from Eq. (1) by expanding
the exponential term to second order, for t � τ, the height of the
sphere z(t) ceases to depend on τ. Thus, a small viscosity (large τ)
is not measurable using a too short trajectory since the sphere will
practically undergo free fall at early times. For example, the time to
reach the bottom of our 9.5 cm cylinder by free fall is about 0.15 s;
hence, this would be an approximate upper limit for the measur-
ability of the parameter τ with such a device, translating into a
lower limit for the viscosity of η � 10�20 cP for typical fluid densi-
ties. The upper limit of the measurable viscosity can, in principle,
be arbitrarily high, as long as the sphere does fall through the fluid.

B. Magnetometer signals

The magnetic field produced by a magnetic dipole of moment
m at the position vector r with respect to the dipole is

B[r] ¼ μ0
4π

�
3(m�r)r

r5 � m
r3

�
, where r ¼ jrj. As shown in Fig. 1, we use

two fluxgate sensors adjacent to the fluid, with their sensitive axes
being along the z axis, the sphere’s trajectory. For the moment, we
consider point sensors, and later, we will take into account the
finite sensing volume. Let the position of the jth fluxgate sensor
be denoted by the position vector (a, b, cj), where j ¼ 1, 2. That is,
we consider the two point sensors to define a line parallel to the z
axis. Then, the position of the jth sensor with respect to the falling
sphere is rj ¼ ax̂ þ bŷ þ (cj � z(t))ẑ . Thus, the signal of the jth
sensor will be Bj(t) ¼ ẑ � B[rj].

At time t ¼ 0, the magnetization of the sphere is aligned with
the axis of the current-carrying coil, the z axis. Setting m ¼ mẑ
and B0 ¼ μ0m=4π, we find

Bj(t) ¼ B0
1

(a2 þ b2)3=2
2f 2j (t)� 1

[1þ f 2j (t)]
5=2

þ b0, (2)

FIG. 1. (a) Schematic and (b) a picture of the magnetic falling-sphere viscome-
ter. A small current-carrying coil holds a magnetic sphere on top of a fluid
column. After switching off the current, the sphere falls in the fluid, experiencing
the force of gravity, and two opposing forces, the buoyant force and the frictional
Stokes force. Two fluxgate magnetometers are positioned next to the fluid
column and measure the changing magnetic field produced by the falling neo-
dymium sphere. The fluid’s dynamic viscosity is extracted by fitting the mea-
sured time-dependent magnetic fields to a theoretical form derived herein.
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where

fj(t) ¼
cj � z(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p , (3)

and b0 being a background magnetic field common to both
sensors. By measuring the difference ΔB ¼ B1(t)� B2(t), the back-
ground field drops out. This helps suppress common magnetic
fields, in particular, ac magnetic fields from nearby 50 Hz power
lines. In summary, the viscosity η hides in the parameter τ entering
the sphere’s height z(t) given by Eq. (1), which in turn enters the
measured magnetic fields Bj(t) through Eqs. (3) and (2).

In Fig. 2, we present example plots for the sphere’s trajectory
z(t) [Fig. 2(a)], the signals B1(t) [Fig. 2(b)] and B2(t) [Fig. 2(c)],
and the difference ΔB ¼ B1 � B2 [Fig. 2(d)] for two values of the
viscosity. For generating these plots, we considered two corrections
of the simplified description outlined previously.

First, the correction is due to the finite volume of the fluid
column, the so-called edge effect. This has been discussed in detail
in Refs. 19, 20, and 24, and we here follow the treatment presented
therein. In particular, the measured viscosity overestimates the true
viscosity because the walls of the fluid’s container effectively push
the sphere upward. This is quantified by a correction factor Kedge,
which for small Reynolds numbers pertinent to our measurements
(Re ⪅ 2) is given by38

Kedge ¼ 1þ n5x5

1þ d1x þ d3x3 þ d5x5 þ d6x6
, (4)

where x ¼ 2r=D, n5 ¼ �0:758 57, d1 ¼ �2:1050, d3 ¼ 2:0865,
d5 ¼ �1:7068, and d6 ¼ 0:726 03. For our case, with D ¼ 14mm
being the diameter of the cylindrical fluid column and r ¼
1:46mm being the sphere’s radius, it is Kedge ¼ 1:726.

The second correction is due to the fact that the fluxgate
sensors are not point sensors, but have a finite volume of a strip
geometry with length 2.2 cm, width 1.5 mm, and thickness
0.025 mm. To simulate the sensor signal, we, thus, integrate the
magnetic field produced by the sphere in the finite volume of the
sensor. The theoretical fits to the data presented next include both
aforementioned corrections.

III. EXPERIMENT

To test the magnetic viscometer, we used three viscosity stan-
dards,39 which were oils of known viscosity ranging from about
200 to 3000 cP. The viscosity reference is given by the manufacturer
at six different temperatures. We used the reference values at 25�C,
but our measurement was not performed exactly at 25�C. Thus, we
fitted the temperature dependence of each standard, and from the
fits, we found the standards’ viscosity at the actual measurement
temperature. In Figs. 3(a)–3(c), we show the temperature depen-
dence of the three viscosity standards, together with the theoretical
fits to the functional form log η(T) ¼ Aþ B=T þ C=T2, suggested
in Ref. 40. In the table of Fig. 3(d), we present the nominal values of
the viscosity standards at 25�C, along with the corrected values at
the actual temperature of our measurement and the corresponding
error. As the manufacturer does not quote any errors in the reported

FIG. 2. Calculated examples of a falling-sphere trajectory and magnetometer
signals for two values of the viscosity, η ¼ 500 cP (blue curves) and
η ¼ 550 cP (red curves). The positions of the two sensors were a ¼ 4 cm,
b ¼ 0, c1 ¼ 8 cm for the upper sensor and c2 ¼ 5 cm for the lower sensor.
(a) Height of the ball as a function of time. (b) Signal B1 of the upper sensor.
(c) Signal B2 of the lower sensor. (d) Difference signal ΔB ¼ B1 � B2.
Parameter values for this calculation were sphere radius and density
r ¼ 1:46mm and ρs ¼ 7:47 g=cm3, respectively, fluid density ρf ¼ 0:8 g=cm3,
fluid column diameter D ¼ 14 mm, and fluid column height H ¼ 10 cm.
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standard values, we used as error source a +0:1�C uncertainty in
the temperature of the fluid, leading to an uncertainty in the refer-
ence viscosity value around 1%.

In Figs. 4(a)–4(c), we present the actual measurements for the
three standard oils, together with the fits to the theoretical form of
Eq. (2), including the corrections mentioned in Sec. II. The output
voltages of the two fluxgate sensors were digitized with a National
Instruments DAQ card at an acquisition rate of 1 kHz. The pre-
sented measurements are the differences, ΔB, of the signals
recorded by the two fluxgate sensors. An average in time was then
performed so that in all cases, the final measured trace for ΔB has
80 data points. The duration of the measurement was defined by
the time when the lower sensor reads a maximum value, increased
by 50%. This way, we omit the data points originating from the
sphere’s trajectory close to the bottom of the container, in order to
not have to include additional corrections due to the finite length
of the trajectory.19,20,24

The fits were obtained with the Levenberg–Marquardt algo-
rithm,41 using as fitting parameters the viscosity, the fluid’s density,
an amplitude scaling the overall signal, and an additive offset. The
positions of the two sensors relative to the fluid column and the
initial height of the sphere were measured and kept constant. In
particular, a ¼ 3:3 cm and b ¼ 4mm define the lateral positions of
the center of the sensors, while c1 ¼ 8:4 cm and c2 ¼ 5:4 cm were
the height of the upper and lower sensor, respectively. The initial
sphere’s height was H ¼ 9:5 cm. The fitted signal amplitudes were
1.28, 1.14, and 1.12 V, corresponding to the samples N100, N350,
and N1000. If the sphere has the exact same trajectory with respect
to the sensors in every measurement, these three amplitudes should
be the same. The amplitude for N100 is 13% larger than the
rest, which can be explained by a slightly shifted placement of

the current-carrying coil with the sphere (in every trial, we first
attach the sphere at the tip of the current-carrying coil and then
lower the coil to visually position the sphere just on top of the fluid
surface).

As seen in Figs. 4(a)–4(c), there is excellent agreement of the
theoretical fits with the measured data. The slight discrepancy
between data and fits observed in the beginning phase of the
signals is conceivably due to an interplay of effects not taken into
account in our theoretical model and related to the splash of the
sphere on the liquid surface,42 to surface tension, and wetting.

IV. RESULTS AND ERROR ANALYSIS

In each of Figs. 4(a)–4(c), we also display the result for the
fit parameter η, together with the error resulting from the fit.
This is calculated by41 δ(ΔB)=

P80
j¼1 (@f (tj)=@η� (ΔB)j)

2, where
δ(ΔB) � 5mV is the measured noise in ΔB, ΔBj are the measured
values of ΔB at time tj, and @f (tj)=@η is the sensitivity of the theo-
retical form to η at time tj. Incidentally, the quoted intrinsic noise
of our fluxgate sensors is 20 pT=

ffiffiffiffiffiffi
Hz

p
at 1 Hz, which within

the 1 kHz bandwidth translates to about δ(ΔB) ¼ 100 μV noise.
Our noise level of 5 mV is mostly due to the sensors operating in the
unshielded environment of the lab, without any filters to reduce low-
frequency noise. In any case, as will be shown next, the quoted fit-
parameter errors stemming from the noise in ΔB are negligible.
Nevertheless, this points to the possibility to obtain, in principle,
even lower uncertainties in the estimate of the viscosity, which would
take advantage of the intrinsic noise level of the sensors.

The fit errors shown in Figs. 4(a)–4(c) underestimate the pre-
cision of our measurements. This is seen by repeating the measure-
ment with the same sample (10 repetitions), in which case, we get

FIG. 3. Temperature dependence of the viscosity, η(T ), as given by the manufacturer39 at six different temperatures for three reference standard oils: (a) N100, (b) N350,
and (c) N1000. The solid line is a fit to the functional form log η(T ) ¼ Aþ B=T þ C=T2, with the respective fit parameters A, B, and C shown in the insets. In the
formula, T is the absolute temperature. We use the fit to correct for the standard viscosity since our measurements were performed around 25�C, but not exactly at 25�C,
which is the second temperature data point provided by the manufacturer. The fit-parameter errors are negligible. (d) The table shows the nominal viscosity reference
values at 25�C and the actual values calculated from the fit at the actual temperature of our measurements. The errors quoted in the values of the corrected viscosities in
the last column of the table derive from an uncertainty of 0:1�C in the actual temperature shown in the fourth column of the table.
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a relative standard deviation in the viscosity estimates around 3%.
This is the final quoted measurement error in the table of Fig. 4(d),
which shows how the measured viscosities compare with the corre-
sponding standard values, demonstrating a very good agreement
given the simplicity of our setup. Sources of the 3% variability
could be short-term temperature drifts or small rotations of the
sphere due to small density inhomogeneities (small bubbles) of the
fluid.

Finally, as noted in Sec. I, one practical advantage of our
methodology is that it allows one to directly access the dynamic vis-
cosity η, in contrast to conventional falling-sphere viscometers
requiring knowledge of the fluid’s density in order to extract the
dynamic viscosity from the measurement of the terminal velocity.
While we do leave the fluid density ρf as a fitting parameter in the
fitting algorithm, the data reported herein do not provide for a
precise measurement of ρf . This is seen qualitatively by the fact
that ρf enters Eq. (1) through the expression 1� ρf =ρs, and the
ratio ρf =ρs is about 0.1; hence, the fluid density only mildly affects
the sphere’s trajectory.

Quantitatively, it becomes evident that the χ2 dependence on
ρf , where χ

2 ¼ P80
j¼1 (f (tj)� (ΔB)j)

2, has a very shallow minimum.
In particular, χ2 is about two orders of magnitude less sensitive on
ρf than it is on η. The result is that the fitted values for the fluid’s
mass density indeed follow the trend of the numbers reported by
the manufacturer for the three standard fluids (N100: 0:874 g=cm3,
N350: 0:891 g=cm3, and N1000: 0:921 g=cm3) but are about
5%–20% off. Moreover, the exact discrepancy depends on the par-
ticular parameter update step chosen in the fitting algorithm. Such
variability in the density estimate translates into viscosity estimate
changes within the 3% error quoted above.

V. DISCUSSION OF MEASUREMENT UNCERTAINTIES

Since this viscometer is based on measuring the magnetic field
produced by the magnetized sphere, it should be operated away from
ambient magnetic-field sources, in particular, strong magnets that
might saturate the sensors or affect the sphere. If this is not an issue, it
could be time-dependent magnetic fields different at the two sensors
that could cause extra noise since the difference signal removes
common mode noise, while a signal difference constant in time is
taken care of by the fitted background of the difference signal ΔB.

Regarding possible forces on the magnetic sphere, the ferro-
magnetic core of the fluxgate sensors themselves produces a mag-
netic field; thus, we placed the sensors at a horizontal distance of
3.3 cm from the fluid sample. We measured the magnetic gradient
produced by the sensors at the position of the fluid, and it was
found to be around 1 mG/cm. Taking into account the remanence
of the sphere (1.3 T), we estimate the sphere’s magnetic moment
and find that the force on the sphere due to this gradient is four
orders of magnitude smaller than the sphere’s weight. Hence, the
sensors themselves do not affect the sphere. In any case, if this vis-
cometer is required to operate close to strong laboratory magnets,
it should be enclosed in a magnetic shield.

Regarding a possible rotation of the sphere upon release from
the current-carrying coil, if there was such a rotation, the theoreti-
cal model would not be able to fit the data since the theoretical
morel assumes constant magnetization of the sphere along the

FIG. 4. (a)–(c) Measured data and theoretical fits for three viscosity reference
standards. The measurement ΔB is the difference of the two fluxgate output
signals (in volts) as a function of time. In each plot, we show the result of the
Levenberg–Marquardt fitting algorithm for the viscosity of the tested fluid and
the fit error. (d) All three viscosity values resulting from the fits, together with the
corresponding standard values obtained as shown in Fig. 3. The final measure-
ment error is 3%, as follows by repeating the measurements with the same
sample.
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z axis (the sphere’s trajectory). Nevertheless, we also used a magne-
tized cylinder and visually inspected the fall, which did not exhibit
any noticeable rotation upon release.

Another concern, due to the sensitive temperature dependence
of viscosity, could be heating of the fluid sample by the frictional
Stokes force. With an-order-of-magnitude calculation, it is seen
that such an effect should be negligible. Indeed, for a fluid specific
heat on the order of 1 J=g=�K and setting the work done by the
sphere’s weight (equal to the to opposing forces when in equilib-
rium) equal to the heat transferred to the fluid, we find a tempera-
ture change on the order of μK.

Yet another concern could be the fluid’s density fluctuations,
possibly causing random rotations of the magnetized sphere and
secondly causing small random deviations from the trajectory of
Eq. (1) due to a random change in the buoyant force. However,
thermodynamic density fluctuations resulting from particle
number fluctuations, on the order of 1=

ffiffiffiffi
N

p
where N is the number

of fluid particles43 in the macroscopic volume occupied by the
sphere, are negligible since N � 1020. On the other hand, there
could be density fluctuations due to more rudimentary issues, such
as tiny bubbles in the fluid. These, however, are much harder to
systematically quantify.

Finally, we checked the sphericity of the spheres and found the
non-sphericity to be at the level of 0.5%, which translates into 1%
uncertainty in the parameter τ, due to the r2-dependence of τ. This
error, along with other uncertainties considered in Refs. 19 and 20, is
negligible with respect to the precision of 3%, which also reflects the
accuracy of this measurement. In summary, in this work, our aim is
not to compete with previous realizations of falling-sphere viscometers
in terms of precision/accuracy, but to introduce a new kind of falling-
sphere viscometer, the precision and accuracy of which we hope to
improve in future refinements of the method.

VI. CONCLUSIONS

We have presented a simple falling-sphere viscometer using a
magnetic sphere and two fluxgate sensors continuously monitoring
the sphere’s fall within the test fluid. The viscometer’s precision
could be further improved by modifying the design details of this
methodology, in particular, the temperature stability. The fluid
volume used in this work is 15 ml, and it can be further reduced by
using a smaller diameter sphere and a smaller fluid container. The
method can also work at higher temperatures, at least up to 80�C
quoted by the magnetized sphere manufacturer, which is a fraction
of neodymium’s Curie point. One could even conceive significant
miniaturization of this technique toward measuring ultra-low fluid
sample volumes by using different kinds of magnetometers, such as
diamond sensors,44,45 or miniaturized atomic magnetometers.46,47
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